Photochemical internalization is an efficient strategy relying on photodynamic reactions to promote siRNA endosomal escape for the success of RNA-interference gene regulation, which makes gene-photodynamic combined therapy highly synergistic and efficient. However, it is still desired to explore capable carriers to improve the delivery efficiency of the immiscible siRNA and organic photosensitizers simultaneously. Herein, we employ a micellar nanostructure (PSNA) self-assembled from polymer-DNA molecular chimeras to fulfill this task.
View Article and Find Full Text PDFObjective: Patients with gastric atrophy and intestinal metaplasia (IM) were at risk for gastric cancer, necessitating an accurate risk assessment. We aimed to establish and validate a diagnostic approach for gastric biopsy specimens using deep learning and OLGA/OLGIM for individual gastric cancer risk classification.
Methods: In this study, we prospectively enrolled 545 patients suspected of atrophic gastritis during endoscopy from 13 tertiary hospitals between December 22, 2017, to September 25, 2020, with a total of 2725 whole-slide images (WSIs).
Metal-organic frameworks (MOFs) with periodically arranged porphyrinic linkers avoiding the self-quenching issue of porphyrins in photodynamic therapy (PDT) have been widely applied. However, the porphyrinic MOFs still face challenges of poor stability under physiological conditions and limited photodynamic efficiency by the hypoxia condition of tumors. Herein, we fabricate the MOF@MOF structure with a protective MOF shell to improve the stability and relieve the hypoxia condition of tumors for sensitized PDT.
View Article and Find Full Text PDFThe development of photodynamic therapy (PDT) is severely limited by short half-life of singlet oxygen (O) and the hypoxic microenvironment. In this work, a plasma membrane targeted photodynamic O economizer (designated as P-POE) is developed to improve the subcellular delivery of photosensitizers and alleviate the tumor hypoxia for enhanced PDT effect. After self-assembly into nanomicelles, P-POE has a relatively high stability and a favorable photochemical performance, which are conducive to boosting the O production.
View Article and Find Full Text PDFChem Commun (Camb)
December 2020
A self-accelerated biocatalyst (Bio-Cat) was developed based on BSA and GOx crosslinked nanoproteins for glucose-initiated tumor starvation and chemodynamic therapy. Bio-Cat could catalyze the glucose to elevate the intracellular HO level and accelerate the conversion of Fe/Fe, resulting in an effective starvation therapy and an accelerated Fenton reaction for chemodynamic therapy.
View Article and Find Full Text PDFDevelopment of antitumor agents with high efficiency and low toxicity is one of the most important goals for biomedical research. However, most traditional therapeutic strategies were limited due to their non-specificity and abnormal tumor microenvironments, causing a poor therapeutic efficiency and severe side effects. In this paper, a tumor targeted self-synergistic nanoplatform (designated as PAO@PCN@HA) was developed for chemotherapy sensitized photodynamic therapy (PDT) against hypoxic tumors.
View Article and Find Full Text PDFSimultaneous inhibitions of primary tumor growth and distant metastasis are very critical for cancer patients to improve their survival and cure rates. Although photodynamic therapy (PDT) shows great potential for primary tumor treatment, it often exacerbates hypoxia with a reduced therapeutic efficacy and subsequently contributes to carcinoma progression and metastatic dissemination. To solve these issues, self-delivery photodynamic nanoinhibitors (PNI) are developed for tumor targeted therapy and metastasis inhibition.
View Article and Find Full Text PDFIntrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer, and thymidine phosphorylase (TP) is a regulator of angiogenesis. To investigate the biological activities of TP in ICC, we established human cholangiocarcinoma RBE cell lines overexpressing TP or silencing TP. Overexpression of TP enhanced viability, suppressed apoptosis and increased tube formation in human umbilical vein endothelial cells, while downregulation of TP reversed these effects.
View Article and Find Full Text PDFBacillus cereus (B. cereus) and Staphylococcus aureus (S. aureus) are major human food-borne pathogens that may produce a variety of toxins and cause diarrhea, food poisoning, and even death.
View Article and Find Full Text PDFIn recent years, epigenetics has attracted great attentions in the field of biomedicine, which is used to denote the heritable changes in gene expression without any variation in DNA sequence, including DNA methylation, histone modification and so on. Inspired by it, a simple and versatile amino acids modification strategy is proposed in this paper to regulate the subcellular distribution of photosensitizer for plasma membrane targeted photodynamic therapy (PDT). Particularly, the plasma membrane anchoring ability and photo toxicity of the photosensitizer against different cell lines could be effectively manipulated at a single amino acid level.
View Article and Find Full Text PDFTargeted delivery of the drug to its therapeutically active site with low immunogenicity and system toxicity is critical for optimal tumor therapy. In this paper, exosomes as naturally-derived nano-sized membrane vesicles are engineered by chimeric peptide for plasma membrane and nucleus targeted photosensitizer delivery and synergistic photodynamic therapy (PDT). Importantly, a dual-stage light strategy is adopted for precise PDT by selectively and sequentially destroying the plasma membrane and nucleus of tumor cells.
View Article and Find Full Text PDFAn abnormal pH microenvironment results from the development of tumors, and also affects the therapeutic efficiency of anti-tumor drugs. In this work, a Förster resonance energy transfer (FRET)-based theranostic fluorescent nanoprobe was constructed for simultaneous ratiometric pH sensing and tumor-targeted photodynamic therapy. Based on the FRET process between rhodamine B and protoporphyrin IX (PpIX), the fabricated nanoprobe exhibited excellent pH responsiveness in both solutions and live cells with the ratiometric fluorescence changes.
View Article and Find Full Text PDFTargeted drug delivery with precisely controlled drug release and activation is highly demanding and challenging for tumor precision therapy. Herein, a biomimetic cascade nanoreactor (designated as Mem@GOx@ZIF-8@BDOX) is constructed for tumor targeted starvation therapy-amplified chemotherapy by assembling tumor cell membrane cloak and glucose oxidase (GOx) onto zeolitic imidazolate framework (ZIF-8) with the loading prodrug of hydrogen peroxide (HO)-sensitive BDOX. Biomimetic membrane camouflage affords superior immune evasion and homotypic binding capacities, which significantly enhance the tumor preferential accumulation and uptake for targeted drug delivery.
View Article and Find Full Text PDFIn this paper, a self-delivery chimeric peptide PpIX-PEG -KVPRNQDWL is designed for photodynamic therapy (PDT) amplified immunotherapy against malignant melanoma. After self-assembly into nanoparticles (designated as PPMA), this self-delivery system shows high drug loading rate, good dispersion, and stability as well as an excellent capability in producing reactive oxygen species (ROS). After cellular uptake, the ROS generated under light irradiation could induce the apoptosis and/or necrosis of tumor cells, which would subsequently stimulate the anti-tumor immune response.
View Article and Find Full Text PDFMitochondria and cell membrane play important roles in maintaining cellular activity and stability. Here, a single-agent self-delivery chimeric peptide based nanoparticle (designated as M-ChiP) was developed for mitochondria and plasma membrane dual-targeted photodynamic tumor therapy. Without additional carrier, M-ChiP possessed high drug loading efficacy as well as the excellent ability of producing reactive oxygen species (ROS).
View Article and Find Full Text PDFAn azobenzene-based heteromeric prodrug (hNDP) was prepared for targeted chemotherapy against hypoxic tumor. hNDP could divert the parent drug from nucleus to cytoplasm with lower toxicity, while the azoreduction of hNDP in hypoxia would activate the drug with a robust anti-tumor effect by initiating the apoptosis-related biochemical cascades.
View Article and Find Full Text PDFObjective: To observe the effect of follicular fluid IL-6, TNF-α on the clinical outcome of in vitro fertilization and embryo transfer (IVF-ET) in patients with ovarian endometriosis.
Method: From June 2013 to June 2014, the data of 64 (from Tangshan Maternal and Child Health Hospital IVF center) ovarian endometriosis patients was analyzed retrospectively. 58 infertility cases caused by male side were used as control group.
Low expression levels of the programmed cell death 5 (PDCD5) gene have been reported in numerous human cancers, however, PDCD5 expression has not been investigated in hepatic cancer. The present study aims to investigate the biological behavior of PDCD5 overexpression in hepatocellular carcinoma (HCC) cells. The PDCD5 gene was stably transfected into the HepG2 HCC cell line (HepG2-PDCD5), and the expression levels of PDCD5 were examined by quantitative polymerase chain reaction and western blotting.
View Article and Find Full Text PDFE-cadherin is a well-known mediator of cell-cell adherens junctions. However, many other functions of E-cadherin have been reported. Collectively, the available data suggest that E-cadherin may also act as a gene transcriptional regulator.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
April 2002
Objective: To investigate the anti-HBV efficacy of bifendate in treatment of chronic hepatitis B.
Methods: A total of 119 patients with chronic hepatitis B were randomly divided into treatment group (n = 65, aged 24 +/- 12) and control group (n = 54, aged 25 +/- 11). In the treatment group every patient was given higher doses bifendate pills (= 12 age, 30 approximately 45 mg/d; > 12 age, 45 approximately 67.