Power generation from water-triggered capillary action in porous structures has recently geared extensive attention, offering the potential for generating electricity from ubiquitous water evaporation. However, conclusively establishing the nature of electrical generation and charge transfer is extremely challenging arising from the complicated aqueous solid-liquid interfacial phenomenon. Here, an electric probe-integrated microscope is developed to on-line monitor the correlation between water capillary action and potential values at any desired position of an active layer.
View Article and Find Full Text PDFPerovskite materials are promising candidates for the implementation of electrically pumped lasers considering the enhanced performance of perovskite-based light-emitting diodes. Nonetheless, current methods of fabricating perovskite optical microcavities require complex patterning technologies to build suitable resonant cavities for perovskite laser emission, burdening the device structure design. To address this issue, we applied inkjet printing, a maskless patterning technique, to directly create spontaneous formations of polycrystalline perovskite microcavity arrays to explore their laser-emitting action.
View Article and Find Full Text PDFSolution processed colloidal semiconductor quantum dots (QDs) have size-tunable optical transitions and high quantum efficiencies, enabling various applications in opto-electronic devices. To enrich the functionality of QD-based opto-electronic devices, colloidal semiconductor QDs have been frequently coupled with optical cavities to enable emission modulation. However, it remains a challenge to fully understand the interaction between the optical cavity resonance and the QD emission, especially for the planar optical microcavities.
View Article and Find Full Text PDFBalanced charge injection is key to achieving perovskite light-emitting diodes (PeLEDs) with a low efficiency roll-off at a high brightness. The use of zinc oxide (ZnO) with a high electron mobility as the charge transport layers is desirable; however, photoluminescence (PL) quenching of a perovskite on ZnO always occurs. Here, a quasi-two-dimensional perovskite on ZnO is explored to uncover the PL quenching mechanism, mainly ascribed to the deprotonation of ammonium cations on the ZnO film in association with the decomposition of low-dimensional perovskite phases.
View Article and Find Full Text PDFImplementation of ammonium halides to trigger low-dimensional perovskite formation has been intensively investigated to achieve blue perovskite light-emitting diodes (PeLEDs). However, the general roles of the incorporated ammonium cations on the quality of the perovskite films, as well as device performance, are still unclear. It is indispensable to build a guideline to rationalize ammonium halides for decent blue emissive films.
View Article and Find Full Text PDFMetal halide perovskite light-emitting diodes (PeLEDs) have been regarded as alternative candidates for full-color display applications with rapid progress to surge the external quantum efficiencies (EQEs) over 20%. However, in contrast to the high efficiencies of green, red, and near-infrared PeLEDs, the performance of their blue cousins is still lagging behind, especially the pure-blue one. Obtaining blue perovskite films with negligible nonradiative recombination loss and high stability is of great importance to realize efficient and spectrally stable blue PeLEDs.
View Article and Find Full Text PDFA new approach for efficiently recovering the wasted light energy in conventional flexible organic light-emitting diodes (FOLEDs) is developed by implementing disordered micro-meander structures (DMMs) via laser speckle holography technology. Compared to conventional flat device architecture, the structured FOLEDs with DMMs result in substantial improvement of the device efficiency and superior angular color stability. The resulting current efficiency (CE) and external quantum efficiency (EQE) are 1.
View Article and Find Full Text PDF