Publications by authors named "Guilherme Nader"

Unlabelled: The recycling of integrin endocytosed during focal adhesion (FA) disassembly is critical for cell migration and contributes to the polarized formation of new FAs toward the leading edge. How this occurs is unclear. Here, we sought to identify the kinesin motor protein(s) that is involved in recycling endocytosed integrin back to the plasma membrane.

View Article and Find Full Text PDF

The integrity of the nuclear envelope (NE) is essential for maintaining the structural stability of the nucleus. Rupture of the NE has been frequently observed in cancer cells, especially in the context of mechanical challenges, such as physical confinement and migration. However, spontaneous NE rupture events, without any obvious physical challenges to the cell, have also been described.

View Article and Find Full Text PDF
Article Synopsis
  • Aging can weaken the immune system and make us more likely to get sick.
  • Researchers found that a protein called Lamin A/C helps protect special immune cells in the lungs from damage as we age.
  • Without Lamin A/C, these immune cells can get hurt, making us more vulnerable to illnesses like the flu and lung cancer.
View Article and Find Full Text PDF

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei.

View Article and Find Full Text PDF
Article Synopsis
  • Some changes in the nuclear envelope (the outer layer of the cell's nucleus) can lead to diseases like muscular dystrophies and speed up aging.
  • This study shows that if the nuclear envelope gets damaged, it can harm DNA and make non-cancerous cells stop growing and help cancer cells become more invasive.
  • The researchers found that a special enzyme called TREX1 moves into the nucleus when the envelope breaks, causing the DNA damage that can spread cancer in crowded areas in the body.
View Article and Find Full Text PDF

During cell growth and motility in crowded tissues or interstitial spaces, cells must integrate multiple physical and biochemical environmental inputs. After a number of recent studies, the view of the nucleus as a passive object that cells have to drag along has become obsolete, placing the nucleus as a central player in sensing some of these inputs. In the present review, we will focus on changes in nuclear shape caused by external and internal forces.

View Article and Find Full Text PDF

Although textbook pictures depict the cell nucleus as a simple ovoid object, it is now clear that it adopts a large variety of shapes in tissues. When cells deform, because of cell crowding or migration through dense matrices, the nucleus is subjected to large constraints that alter its shape. In this review, we discuss recent studies related to nuclear fragility, focusing on the surprising finding that the nuclear envelope can form blebs.

View Article and Find Full Text PDF

Cytosolic DNA activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS), an innate immune sensor pivotal in anti-microbial defense, senescence, auto-immunity, and cancer. cGAS is considered to be a sequence-independent DNA sensor with limited access to nuclear DNA because of compartmentalization. However, the nuclear envelope is a dynamic barrier, and cGAS is present in the nucleus.

View Article and Find Full Text PDF

Single cells migrate in a myriad of physiological contexts, such as tissue patrolling by immune cells, and during neurogenesis and tissue remodeling, as well as in metastasis, the spread of cancer cells. To understand the basic principles of single-cell migration, a reductionist approach can be taken. This aims to control and deconstruct the complexity of different cellular microenvironments into simpler elementary constrains that can be recombined together.

View Article and Find Full Text PDF
Article Synopsis
  • Drosophila genetics is a valuable resource for studying innate immunity, particularly through the behavior of hemocytes, which are fly immune cells that can move and engulf pathogens.
  • Hemocytes are crucial for Drosophila development during both embryonic and pupal stages, but there's a lack of effective lab techniques to analyze their movement in controlled environments.
  • The research introduces a method to observe hemocyte behavior by stimulating them with ecdysone, revealing changes in cell structure and movement that help understand the underlying biological processes of cell locomotion.
View Article and Find Full Text PDF

Nuclear pore complexes tightly regulate nucleo-cytoplasmic transport, controlling the nuclear concentration of several transcription factors. In a recent issue of Cell, Elosegui-Artola et al. (2017) show that nuclear deformation modulates the nuclear entry rates of YAP/TAZ via nuclear pore stretching, clarifying how forces affect gene transcription.

View Article and Find Full Text PDF

Integrin endocytic recycling is critical for cell migration, yet how recycled integrins assemble into new adhesions is unclear. By synchronizing endocytic disassembly of focal adhesions (FAs), we find that recycled integrins reassemble FAs coincident with their return to the cell surface and dependent on Rab5 and Rab11. Unexpectedly, endocytosed integrins remained in an active but unliganded state in endosomes.

View Article and Find Full Text PDF

Selectively stabilized microtubules (MTs) form in the lamella of fibroblasts and contribute to cell migration. A Rho-mDia-EB1 pathway regulates the formation of stable MTs, yet how selective stabilization of MTs is achieved is unknown. Kinesin activity has been implicated in selective MT stabilization and a number of kinesins regulate MT dynamics both in vitro and in cells.

View Article and Find Full Text PDF