There is an urgent need to develop new, safer, and more effective drugs against Chagas disease (CD) as well as related kinetoplastid diseases. Targeting and inhibiting the Trypanosoma cruzi proteasome has emerged as a promising therapeutic approach in this context. To expand the chemical space for this class of inhibitors, we performed virtual screening campaigns with emphasis on shape-based similarity and ADMET prioritization.
View Article and Find Full Text PDFComputational models that predict pharmacokinetic properties are critical to deprioritize drug candidates that emerge as hits in high-throughput screening campaigns. We collected, curated, and integrated a database of compounds tested in 12 major end points comprising over 10,000 unique molecules. We then employed these data to build and validate binary quantitative structure-activity relationship (QSAR) models.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2023
Chagas disease is a well-known Neglected Tropical Disease, mostly endemic in continental Latin America, but that has spread to North America and Europe. Unfortunately, current treatments against such disease are ineffective and produce known and undesirable side effects. To find novel effective drug candidates to treat Chagas disease, we uniquely explore the proteasome as a recent biological target and, also, apply drug repurposing through different computational methodologies.
View Article and Find Full Text PDFToxicol Res (Camb)
June 2022
Kefiran is a polysaccharide present in kefir grains that have been widely explored due to its potential health benefits. The objective of this work was to characterize and quantify the components present in the ethanolic extract of milk kefir grains; to study its pharmacokinetic and toxicological properties in silico and evaluate the acute toxicity of the kefiran in zebrafish. The prediction of pharmacokinetic properties was performed by QikProp software.
View Article and Find Full Text PDFComput Biol Med
October 2021
Microtubules have been widely studied in recent decades as an important pharmacological target for the treatment of cancer especially due to its key role in the mitosis process. Among the constituents of the microtubules, αβ-tubulin dimers stand out in view of their four distinct interaction sites, including the so-called colchicine binding site (CBS) - a promising target for the development of new tubulin modulators. When compared to other tubulin sites, targeting the CBS is advantageous because this site is able to host ligands with lower molecular volume and lipophilicity, thus reducing the chances of entailing the phenomenon of multiple drug resistance (MDR) - one of the main reasons of failure in chemotherapy.
View Article and Find Full Text PDFBioorg Med Chem
October 2021
Breast cancer has the highest incidence and mortality in females, while prostate cancer has the second-highest incidence in males. Studies have shown that compounds from Brazilian green propolis have antitumor activities and can selectively inhibit the AKR1C3 enzyme, overexpressed in hormone-dependent prostate and breast tumors. Thus, in an attempt to develop new cytotoxic inhibitors against these cancers, three prenylated compounds, artepillin C, drupanin and baccharin, were isolated from green propolis to synthesize new derivatives via coupling reactions with different amino acids.
View Article and Find Full Text PDFFuture Med Chem
August 2021
The new coronavirus pandemic has had a significant impact worldwide, and therapeutic treatment for this viral infection is being strongly pursued. Efforts have been undertaken by medicinal chemists to discover molecules or known drugs that may be effective in COVID-19 treatment - in particular, targeting the main protease (Mpro) of the virus. We have employed an innovative strategy - application of ligand- and structure-based virtual screening - using a special compilation of an approved and diverse set of SARS-CoV-2 crystallographic complexes that was recently published.
View Article and Find Full Text PDFInt J Biol Macromol
December 2020
Among several strategies related to cancer therapy targeting the modulation of αβ-tubulin has shown encouraging findings, more specifically when this is achieved by inhibitors located at the colchicine binding site. In this work, we aim to fish new αβ-tubulin modulators through a diverse and rational VS study, and thus, exhibiting the development of two VS pipelines. This allowed us to identify two compounds 5 and 9 that showed IC values of 19.
View Article and Find Full Text PDFCurr Comput Aided Drug Des
January 2022
Background: Euterpe oleracea Martius, popularly known as açaí, is a fruit rich in α- tocopherols, fibers, lipids, mineral ions, and polyphenols. It is believed that the high content of polyphenols, especially flavonoids, provides several health-promoting effects to the açaí fruit, including anti-inflammatory, immunomodulatory, antinociceptive and antioxidant properties. Most of the flavonoids are antioxidant molecules of plant origin that act as a trap for free radicals, reacting and neutralizing them, thus offering perspectives in preventing oxidative damage.
View Article and Find Full Text PDFAmong neurodegenerative disorders, Alzheimer's disease (AD) is the most common type of dementia, and there is an urgent need to discover new and efficacious forms of treatment for it. Pathological patterns of AD include cholinergic dysfunction, increased β-amyloid (Aβ) peptide concentration, the appearance of neurofibrillary tangles, among others, all of which are strongly associated with specific biological targets. Interactions observed between these targets and potential drug candidates in AD most often occur by competitive mechanisms driven by orthosteric ligands that sometimes result in the production of side effects.
View Article and Find Full Text PDF