A correction is made to the paper by Jones et al. (2020). [J.
View Article and Find Full Text PDFThe Macquarie University Deformation-DIA (MQ D-DIA) multi-anvil apparatus at the Australian Synchrotron provides a new experimental facility that enables simultaneous high-pressure and high-temperature in situ synchrotron experimentation in Australia. The MQ D-DIA can be easily deployed at any of a number of beamlines at the Australian Synchrotron, and we describe its installation at the x-ray absorption spectroscopy beamline, which enables in situ x-ray absorption near-edge spectroscopy and energy-scanning x-ray diffraction. A simple, reliable, and x-ray transparent high-pressure cell assembly has been developed for the D-DIA for which load/pressure and heater power/temperature relationships have been calibrated using in situ x-ray diffraction and "offline" mineral equilibration experiments.
View Article and Find Full Text PDFDetermining the oxidation state of Fe through parameterization of X-ray absorption near-edge structure (XANES) spectral features is highly dependent on accurate and repeatable energy calibration between spectra. Small errors in energy calibration can lead to vastly different interpretations. While simultaneous measurement of a reference foil is often undertaken on X-ray spectroscopy beamlines, other beamlines measure XANES spectra without a reference foil and therefore lack a method for correcting energy drift.
View Article and Find Full Text PDFSubduction zone or arc magmas are known to display a characteristic depletion of High Field Strength Elements (HFSE) relative to other similarly incompatible elements, which can be attributed to the presence of the accessory mineral rutile (TiO2) in the residual slab. Here we show that the partitioning behavior of vanadium between rutile and silicate melt varies from incompatible (∼0.1) to compatible (∼18) as a function of oxygen fugacity.
View Article and Find Full Text PDF