Publications by authors named "Guilherme Lunardon"

Unlabelled: Obesity is a major contributor to metabolic and cardiovascular disease. Although senescent cells have been shown to accumulate in adipose tissue, the role of senescence in obesity-induced metabolic disorders and in cardiac dysfunction is not yet clear; therefore, the therapeutic potential of managing senescence in obesity-related metabolic and cardiac disorders remains to be fully defined.

Objective: We investigated the beneficial effects of a senolytic cocktail (dasatinib and quercetin) on senescence and its influence on obesity-related parameters.

View Article and Find Full Text PDF

Aims: Blood vessels are surrounded by perivascular adipose tissue (PVAT), which plays an important role in vascular tonus regulation due to its anticontractile effect; however, this effect is impaired in obesity. We previously demonstrated that miRNA-22 is involved in obesity-related metabolic disorders. However, the impact of miRNA-22 on vascular reactivity and PVAT function is unknown.

View Article and Find Full Text PDF

High-fat diet (HFD) promotes obesity-related metabolic complications by activating cellular senescence in white adipose tissue (WAT). Growing evidence supports the importance of microRNA-22 (miR-22) in metabolic disorders and cellular senescence. Recently, we showed that miR-22 deletion attenuates obesity-related metabolic abnormalities.

View Article and Find Full Text PDF

Cardiovascular diseases are the main cause of death worldwide. Recent studies have revealed the influence of histone-modifying enzymes in cardiac remodeling and heart dysfunction. The Set7 methyltransferase regulates the expression of several genes through the methylation of histones and modulates the activity of non-histone proteins.

View Article and Find Full Text PDF
Article Synopsis
  • A high-fat and sugar diet can lead to metabolic and cardiovascular issues, and the protein Set7 has been linked to various biological processes but its role in obesity-related complications is not well understood.
  • This study involved wild type and Set7 knockout female mice on either a normal or obesogenic diet for 12 weeks to assess weight gain, glucose tolerance, and cardiac function.
  • Results showed that while Set7 levels increased in mice on an unhealthy diet, its loss improved glucose tolerance and cardiac recovery after injury, but did not change body weight or fat gain.*
View Article and Find Full Text PDF

New Findings: What is the central question of this study? What is the effect of an obesogenic diet on the expression of microRNAs (miRNAs) involved in cardiac hypertrophy in female mice? What is the main finding and its importance? Female mice fed an obesogenic diet exhibited cardiac hypertrophy associated with increased levels of miRNA-143-3p, decreased mRNA levels of Sox6 and increased mRNA levels of Myh7. Inhibition of miRNA-143-3p increased Sox6 mRNA levels and reduced Myh7 expression in cardiomyocytes, and prevented angiotensin II-induced cardiomyocyte hypertrophy. The results indicate that the miRNA-143-3p-Sox6-Myh7 pathway may play a key role in obesity-induced cardiac hypertrophy.

View Article and Find Full Text PDF