Publications by authors named "Guilherme L Duarte"

NAC transcription factors are plant-specific proteins involved in many processes during the plant life cycle and responses to biotic and abiotic stresses. Previous studies have shown that stress-induced OsNAC5 from rice (Oryza sativa L.) is up-regulated by senescence and might be involved in control of iron (Fe) and zinc (Zn) concentrations in rice seeds.

View Article and Find Full Text PDF

Eugenia uniflora is an Atlantic Forest native species, occurring in contrasting edaphoclimatic environments. The identification of genes involved in response to abiotic factors is very relevant to help in understanding the processes of local adaptation. 1-Pyrroline-5-carboxylate synthetase (P5CS) is one interesting gene to study in this species since it encodes a key enzyme of proline biosynthesis, which is an osmoprotectant during abiotic stress.

View Article and Find Full Text PDF

Iron (Fe) is an essential micronutrient that is frequently inaccessible to plants. Rice (Oryza sativa L.) plants employ the Combined Strategy for Fe uptake, which is composed by all features of Strategy II, common to all Poaceae species, and some features of Strategy I, common to non-Poaceae species.

View Article and Find Full Text PDF

Iron (Fe) is an essential element to plants, but can be harmful if accumulated to toxic concentrations. Fe toxicity can be a major nutritional disorder in rice () when cultivated under waterlogged conditions, as a result of excessive Fe solubilization of in the soil. However, little is known about the basis of Fe toxicity and tolerance at both physiological and molecular level.

View Article and Find Full Text PDF

AtGRP3 is a glycine-rich protein (GRP) from Arabidopsis thaliana shown to interact with the receptor-like kinase AtWAK1 in yeast, in vitro and in planta. In this work, phenotypic analyses using transgenic plants were performed in order to better characterize this GRP. Plants of two independent knockout alleles of AtGRP3 develop longer roots suggesting its involvement in root size determination.

View Article and Find Full Text PDF

Rice is the staple food of half of the world's population; however, it is a poor source of essential micronutrients such as Fe and Zn. Since flag leaves are one of the sources of remobilized metals for developing seeds, the identification of the molecular players that might contribute to the process of metal transport from flag leaves to the seeds may be useful for biofortification purposes. We analyzed the expression of 25 metal-related genes from rice, including rice homologues for YSLs, NRAMPs, ZIPs, IRT1, VIT1 (coding for known or potential metal transporters), as well as NASs, FROs and NAC5 (involved in metal homeostasis) in flag leaves of eight rice cultivars (showing contrasting levels of seed Fe and Zn) during panicle emergence (R3) and grain filling stage (R5).

View Article and Find Full Text PDF

Rice is a poor source of micronutrients such as iron and zinc. To help clarify the molecular mechanisms that regulate metal mobilization from leaves to developing seeds, we conducted suppression subtractive hybridization analysis in flag leaves of two rice cultivars. Flag leaves are the major source of remobilized metals for developing seeds.

View Article and Find Full Text PDF

Iron deficiency is among the most common nutritional disorders in plants. Low iron supply causes decreased root growth and even plant death. However, there are no reports about the specific pathways that lead Fe-deficient roots to senescence and death.

View Article and Find Full Text PDF