Publications by authors named "Guilherme Francisco Peruca"

Lung cancer is the second leading cause of cancer death worldwide and is strongly associated with cisplatin resistance. The transcription factor signal transducer and activator of transcription 3 (STAT3) is constitutively activated in cancer cells and coordinates critical cellular processes as survival, self-renewal, and inflammation. In several types of cancer, STAT3 controls the development, immunogenicity, and malignant behavior of tumor cells while it dictates the responsiveness to radio- and chemotherapy.

View Article and Find Full Text PDF

Obesity is closely related to insulin resistance and type 2 diabetes genesis. The liver is a key organ to glucose homeostasis since insulin resistance in this organ increases hepatic glucose production (HGP) and fasting hyperglycemia. The protein-tyrosine phosphatase 1B (PTP1B) may dephosphorylate the IR and IRS, contributing to insulin resistance in this organ.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer‑associated death worldwide and exhibits intrinsic and acquired therapeutic resistance to cisplatin (CIS). The present study investigated the role of mTOR signaling and other signaling pathways after metformin (MET) treatment in control and cisplatin‑resistant A549 cells, mapping pathways and possible targets involved in CIS sensitivity. MTT, flow cytometry, clonogenic assay, western blotting, proteomic analysis using the Stable Isotope Labeling by Amino acids in Cell culture (SILAC) approach and reverse transcription‑quantitative PCR were performed.

View Article and Find Full Text PDF

Obesity is linked to a reduction in the control of hepatic glucose production, which is the primary mechanism related to fasting hyperglycemia and the development of type 2 diabetes mellitus (T2DM). The main system involved in hepatic gluconeogenesis synthesis is controlled by pyruvate carboxylase (PC), which increases in obesity conditions. Recently, we showed that short-term strength training is an important tool against obesity-induced hyperglycemia.

View Article and Find Full Text PDF

The impairment of mitochondrial metabolism is a hallmark of aging. Mitonuclear imbalance and the mitochondrial unfolded protein response (UPRmt) are two conserved mitochondrial mechanisms that play critical roles in ensuring mitochondrial proteostasis and function. Here, we combined bioinformatics, physiological, and molecular analyses to examine the role of mitonuclear imbalance and UPRmt in the skeletal muscle of aged rodents and humans.

View Article and Find Full Text PDF