Publications by authors named "Guilherme F de Lima"

Chalcopyrite, the world's primary copper ore mineral, is abundant in Latin America. Copper extraction offers significant economic and social benefits due to its strategic importance across various industries. However, the hydrometallurgical route, considered more environmentally friendly for processing low-grade chalcopyrite ores, remains challenging, as does its concentration by froth flotation.

View Article and Find Full Text PDF

The increasing demand for natural gas as a clean energy source has emphasized the need for efficient gas separation technologies. Metal-organic frameworks (MOFs) have emerged as a promising class of materials for gas separation, with anion-pillared MOFs (APMOFs) gaining attention for their fine-tuned pore design and shape/size selectivity. In this study, we investigate the dynamical and electronic properties of three APMOFs, SIFSIX-3-Cu, SIFSIX-2-Cu-i, and SIFSIX-2-Cu, for the separation of methane from ethane, ethene, propane, propene, and N using computational simulations.

View Article and Find Full Text PDF

The oxidation of chalcopyrite, CuFeS, is still not well understood and relevant in the context of the hydrometallurgical extraction of copper. Herein, we used DFT calculations within the periodic boundary conditions formalism to study the adsorption of O and [Fe(HO)(OH)] molecules on the (001) and (112) surfaces of CuFeS. The O molecule adsorbs strongly by a dissociative pathway at sulfur atoms on the (001) surface with an adsorption energy of - 76.

View Article and Find Full Text PDF

The selective adsorption of CO in mixture with other greenhouse gases by porous materials is challenging and it has several consequences from the environmental and economic point of view. We carried out DFT calculations with periodic boundary conditions and plane waves basis set to better understand the adsorption of CO, CO, CH, N, O, and H within the pore of the metal-organic frameworks (MOFs) SIFSIX-2-Cu, SIFSIX-2-Cu-i, and SIFSIX-3-Cu. These porous materials have a copper ion coordinated to an organic linker and the inorganic SiF pillar, and they show a remarkable CO uptake.

View Article and Find Full Text PDF

We describe a new synthetic methodology for the preparation of fluorescent π-extended phenazines from the naturally-occurring naphthoquinone lapachol. These novel structures represent the first fluorogenic probes based on the phenazine scaffold for imaging of lipid droplets in live cells. Systematic characterization and analysis of the compounds and in cells led to the identification of key structural features responsible for the fluorescent behavior of quinone-derived π-extended phenazines.

View Article and Find Full Text PDF

For the first time, a fluorescent lapachone-based BODIPY was synthesised and characterised by NMR and mass spectrometry. Computational and electrochemical aspects, as well as cytotoxic activity and subcellular localisation, were studied. Confocal microscopy experiments indicated that the probe was a specific mitochondria-staining agent.

View Article and Find Full Text PDF

A new dynamical discrete/continuum solvation model was tested for NH(4)(+) and OH(-) ions in water solvent. The method is similar to continuum solvation models in a sense that the linear response approximation is used. However, different from pure continuum models, explicit solvent molecules are included in the inner shell, which allows adequate treatment of specific solute-solvent interactions present in the first solvation shell, the main drawback of continuum models.

View Article and Find Full Text PDF

We report the complete sequence-specific hydrogen NMR assignments of vasoactive peptide angiotensin-(1-7) (Ang-(1-7)). Assignments of the majority of the resonances were accomplished by COSY, TOCSY, and ROESY peak coordinates at 400MHz and 600MHz. Long-side-chain amino acid spin system identification was facilitated by long-range coherence transfer experiments (TOCSY).

View Article and Find Full Text PDF