Publications by authors named "Guilherme F S R Rocha"

Green hydrogen is the key to the chemical industry achieving net zero emissions. The chemical industry is responsible for almost 2% of all CO emissions, with half of it coming from the production of simple commodity chemicals, such as NH, HO, methanol, and aniline. Despite electrolysis driven by renewable power sources emerging as the most promising way to supply all the green hydrogen required in the production chain of these chemicals, in this review, it is worth noting that the photocatalytic route may be underestimated and can hold a bright future for this topic.

View Article and Find Full Text PDF

Single-atom catalysis is a field of paramount importance in contemporary science due to its exceptional ability to combine the domains of homogeneous and heterogeneous catalysis. Iron and manganese metalloenzymes are known to be effective in C─H oxidation reactions in nature, inspiring scientists to mimic their active sites in artificial catalytic systems. Herein, a simple and versatile cation exchange method is successfully employed to stabilize low-cost iron and manganese single-atoms in poly(heptazine imides) (PHI).

View Article and Find Full Text PDF

Recently, the missing link between homogeneous and heterogeneous catalysis has been found and it was named single-atom catalysis (SAC). However, the SAC field still faces important challenges, one of which is controlling the bonding/coordination between the single atoms and the support in order to compensate for the increase in surface energy when the particle size is reduced due to atomic dispersion. Excellent candidates to meet this requirement are carbon nitride (CN)-based materials.

View Article and Find Full Text PDF

Photocatalysis provides a sustainable pathway to produce the consumer chemical HO from atmospheric O via an oxygen reduction reaction (ORR). Such an alternative is attractive to replace the cumbersome traditional anthraquinone method for HO synthesis on a large scale. Carbon nitrides have shown very interesting results as heterogeneous photocatalysts in ORR because their covalent two-dimensional (2D) structure is believed to increase selectivity toward the two-electron process.

View Article and Find Full Text PDF

Solar-to-chemical conversion via photocatalysis is of paramount importance for a sustainable future. Thus, investigating the synergistic effects promoted by light in photocatalytic reactions is crucial. The tandem oxidative coupling of alcohols and amines is an attractive route to synthesize imines.

View Article and Find Full Text PDF

Plasmonic catalysis takes advantage of the surface plasmon resonance (SPR) excitation to drive or accelerate chemical transformations. In addition to the plasmonic component, the control over metal-support interactions in these catalysts is expected to strongly influence the performances. For example, CeO2 has been widely employed towards oxidation reactions due to its oxygen mobility and storage properties, which allow for the formation of Ce3+ sites and adsorbed oxygen species from metal-support interactions.

View Article and Find Full Text PDF