Additive manufacturing, particularly Stereolithography (SLA), has gained widespread attention thanks to its ability to produce intricate parts with high precision and customization capacity. Nevertheless, the inherent low mechanical properties of SLA-printed parts limit their use in high-value applications. One approach to enhance these properties involves the incorporation of nanomaterials, with graphene oxide (GO) being a widely studied option.
View Article and Find Full Text PDFSeveral efforts have been dedicated to the development of lignin-based polyurethanes (PU) in recent years. The low and heterogeneous reactivity of lignin hydroxyl groups towards diisocyanates, arising from their highly complex chemical structure, limits the application of this biopolymer in PU synthesis. Besides the well-known differences in the reactivity of aliphatic and aromatic hydroxyl groups, experimental work in which the reactivity of both types of hydroxyl, especially the aromatic ones present in syringyl (S-unit), guaiacyl (G-unit), and -hydroxyphenyl (H-unit) building units are considered and compared, is still lacking in the literature.
View Article and Find Full Text PDFFor the first time, the novel experimental technique Temperature Modulated Optical Refractometry (TMOR) was employed for cocoa butter thermal transitions characterization. The average refractive index (N), the volume (v) change, and the volumetric expansion coefficient ( β q ) as well as the dynamic quantities β ' and β ″ (real and imaginary volumetric expansion coefficient, respectively) were monitored during cooling and heating and compared to the heat flow curves obtained via the standard technique dynamic scanning calorimetry (DSC). The investigation of these quantities showed that TMOR analysis can yield not only thermal transitions temperatures that are comparable to DSC results, but also some new thermal events that are not detected by DSC.
View Article and Find Full Text PDF