Publications by authors named "Guilherme D Rossi"

Leaf scald is a destructive sugarcane disease caused by the bacterium Xanthomonas albilineans (Ashby) Dowson. This pathogen presents the gene cluster SPI-1 T3SS, a conserved feature in pathogens vectored by animals. In this study, the competence of Mahanarva fimbriolata (Stål), a spittlebug commonly found in sugarcane fields in Brazil, was evaluated for the transmission of X.

View Article and Find Full Text PDF

Lepidopteran pests have been successfully managed by the adoption of insect resistant transgenic plants expressing Cry and/or Vip insecticidal proteins derived from Bacillus thuringiensis (Bt plants). Among such pests, Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) is highlighted for its destructive potential in maize crops and for cases of field-evolved resistance to Bt plants. Cry insecticidal proteins expressed in Bt plants are known for their interaction with insect midgut receptors and subsequent midgut cell disruption that leads to target pest death.

View Article and Find Full Text PDF

Leaf scald caused by the bacteria Xanthomonas albilineans is one of the major concerns to sugarcane production. To breed for resistance, mechanisms underlying plant-pathogen interaction need deeper investigations. Herein, we evaluated sugarcane defense responses against X.

View Article and Find Full Text PDF

Teratocytes are specialized cells released by parasitoid wasps into their hosts. They are known for producing regulatory molecules that aid the development of immature parasitoids. We have recently reported the primary structures of cystine-rich peptides, including some containing inhibitor cystine knot (ICK) motifs, produced by teratocytes of the parasitoid Cotesia flavipes (Hymenoptera: Braconidae).

View Article and Find Full Text PDF

Parasitoid wasps have evolved sophisticated mechanisms of host regulation that establish a favorable environment for the development of immature parasitoids. While maternal venom and symbiotic virus-like particles are well-known mechanisms of host regulation, another less-studied mechanism is the secretion of host regulation factors by cells called teratocytes, extra-embryonic cells released during parasitoid larval eclosion. Consequently, identification and characterization of teratocyte secretory products has not been reported in detail for any parasitoid wasp.

View Article and Find Full Text PDF

Endoparasitoid wasps use complex biochemical arsenals to suppress the normal humoral and cellular immune responses of their hosts in order to transform them into a suitable environment for development of their eggs and larvae. Venom injected during oviposition is a key component of this arsenal, but the functions of individual venom toxins are still poorly understood. Furthermore, there has been little investigation of the potential biotechnological use of these venom toxins, for example for control of agricultural pests.

View Article and Find Full Text PDF

Like conventional crops, transgenic plants expressing insecticidal toxins from Bacillus thuringiensis (Bt) are subjected to water deprivation. However, the effects of water deprivation over the insecticidal activity of Bt plants are not well understood. We submitted Bt maize and Bt soybean to water deprivation and evaluated biochemical stress markers and the insecticidal activity of plants against target insects.

View Article and Find Full Text PDF

The intense spraying of pesticides to control different arthropod pests has resulted in negative side effects for the management of pests. It was previously discovered that exposure to non-acaricidal insecticides alone or in a mixture, results in lower efficiency of the acaricide spirodiclofen used for Brevipalpus spp. control.

View Article and Find Full Text PDF

Biological control using entomopathogens and natural enemies is an ecofriendly method for pest management in agriculture. Biological control agents often can be simultaneously employed and compatibility between agents may improve pest suppression. We investigated the influence of the entomopathogen Bacillus thuringiensis (Bt) on the immune system of the sugarcane borer Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae) to determine if such changes impact parasitization by Cotesia flavipes Cameron, 1891 (Hymenoptera: Braconidae).

View Article and Find Full Text PDF

Parasitoids exploit host insects for food and other resources; they alter host development and physiology to optimize conditions to favor parasitoid development. Parasitoids influence their hosts by injecting eggs, along with a variety of substances, including venoms, polydnaviruses, ovarian fluids, and other maternal factors, into hosts. These factors induce profound changes in hosts, such as behavior, metabolism, endocrine events, and immune defense.

View Article and Find Full Text PDF