This study critically reevaluates reported Biginelli-like reactions using a Kamlet-Abboud-Taft-based solvent effect model. Surprisingly, structural misassignments were discovered in certain multicomponent reactions, leading to the identification of pseudo three-component derivatives instead of the expected MCR adducts. Attempts to replicate literature conditions failed, prompting reconsideration of the described MCRs and proposed mechanisms.
View Article and Find Full Text PDFNanotechnology has assumed a significant role over the last decade in the development of various technologies applied to health sciences. This becomes even more evident with its application in controlled drug delivery systems. In this context, peptoids are a promising class of compounds for application as nanocarriers in drug delivery systems.
View Article and Find Full Text PDFSolvation free energies can now be calculated precisely from molecular simulations, providing a valuable test of the energy functions underlying these simulations. Here, we briefly review "alchemical" approaches for calculating the solvation free energies of small, neutral organic molecules from molecular simulations, and illustrate by applying them to calculate aqueous solvation free energies (hydration free energies). These approaches use a non-physical pathway to compute free energy differences from a simulation or set of simulations and appear to be a particularly robust and general-purpose approach for this task.
View Article and Find Full Text PDF