Background: The 3D printing of macro- and mesoporous biomimetic grafts composed of polycaprolactone (PCL) infused with nanosized synthetic smectic clay is a promising innovation in biomaterials for bone tissue engineering (BTE). The main challenge lies in achieving a uniform distribution of nanoceramics across low to high concentrations within the polymer matrix while preserving mechanical properties and biological performance essential for successful osseointegration.
Methods: This study utilized 3D printing to fabricate PCL scaffolds enriched with nanosized synthetic smectic clay (LAP) to evaluate its effects on structural, chemical, thermal, mechanical, and degradative properties, with a focus on in vitro biological performance and non-toxicity.
Purpose: Tissue engineering aims to recreate natural cellular environments to facilitate tissue regeneration. Gelatin methacrylate (GelMA) is widely utilized for its biocompatibility, ability to support cell adhesion and proliferation, and adjustable mechanical characteristics. This study developed a GelMA and graphene bioink platform at concentrations of 1, 1.
View Article and Find Full Text PDF3D printing is attractive for the direct repair of bone defects in underdeveloped countries and in emergency situations. So far, the lack of an interesting method to produce filament using FDA-approved biopolymers and nanoceramics combined with a portable strategy limits the use of in situ 3D printing. Herein, we investigated the osseointegration of new nanocomposite filaments based on polylactic acid (PLA), laponite (Lap), and hydroxyapatite (Hap) printed directly at the site of the bone defect in rats using a portable 3D printer.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
March 2022
Introduction: Major depressive disorder is associated with chronic inflammation and deficient production of brain-derived neurotrophic factor (BDNF). Bone marrow mononuclear cell (BMMC) transplantation has an anti-inflammatory effect and has been proven effective in restoring non-depressive behavior. This study investigated whether BMMC transplantation can prevent the development of depression or anxiety in chronic mild stress (CMS), as well as its effect on inflammatory and neurogenic molecules.
View Article and Find Full Text PDFBackground: Inflammation could be a risk factor for the development of depression and change the outcome of this common chronic-recurrent mental disorder.
Aims: This study aimed to investigate if bone marrow mononuclear cell (BMMC) transplantation is effective in restoring sucrose preference in rats subjected to chronic stress (CS), if it has an anti-inflammatory effect and is able to restore damaged DNA.
Methods: The effect of BMMC transplantation was studied in a controlled protocol (compared with a control group and a selective serotonin reuptake inhibitor escitalopram group) involving sucrose preference in CS in rats.