Chamaecrista is a Pantropical legume genus of the tribe Cassieae, which includes six other genera. In contrast to most of the other Cassieae genera, Chamaecrista shows significant variability in chromosome number (from 2n = 14 to 2n = 56), with small and morphologically similar chromosomes. Here, we performed a new cytomolecular analysis on chromosome number, genome size, and rDNA site distribution in a molecular phylogenetic perspective to interpret the karyotype trends of Chamaecrista and other two genera of Cassieae, seeking to understand their systematics and evolution.
View Article and Find Full Text PDFInversions and translocations are the major chromosomal rearrangements involved in Vigna subgenera evolution, being Vigna vexillata the most divergent species. Centromeric repositioning seems to be frequent within the genus. Oligonucleotide-based fluorescence in situ hybridization (Oligo-FISH) provides a powerful chromosome identification system for inferring plant chromosomal evolution.
View Article and Find Full Text PDFPurpose: Daily clinical use of therapeutic light sources can lead to changes in light emission stability with potentially significant consequences for usage in photomedicine treatment. The aim of this study was to evaluate the average and maximum power and to describe the beam diameter of different low-power laser photobiomodulation devices in clinical use in Brazil.
Methods: The power and light-emitting beam diameter of twenty-four therapeutic devices with an average age of 11±5 years, with an average weekly use of fewer than thirty minutes, were measured.
Large-scale structural variations, such as chromosomal translocations, can have profound effects on fitness and phenotype, but are difficult to identify and characterize. Here, we describe a simple and effective method aimed at identifying translocations using only the dosage of sequence reads mapped on the reference genome. We binned reads on genomic segments sized according to sequencing coverage and identified instances when copy number segregated in populations.
View Article and Find Full Text PDFBackground: Structural variants (SVs) significantly drive genome diversity and environmental adaptation for diverse species. Unlike the prevalent small SVs (< kilobase-scale) in higher eukaryotes, large-size SVs rarely exist in the genome, but they function as one of the key evolutionary forces for speciation and adaptation.
Results: In this study, we discover and characterize several megabase-scale presence-absence variations (PAVs) in the maize genome.
An Oligo-FISH barcode system was developed for two model legumes, allowing the identification of all cowpea and common bean chromosomes in a single FISH experiment, and revealing new chromosome rearrangements. The FISH barcode system emerges as an effective tool to understand the chromosome evolution of economically important legumes and their related species. Current status on plant cytogenetic and cytogenomic research has allowed the selection and design of oligo-specific probes to individually identify each chromosome of the karyotype in a target species.
View Article and Find Full Text PDFOligonucleotide (oligo)-fluorescence in situ hybridization (FISH) has rapidly becoming the new generation of FISH technique in plant molecular cytogenetics research. Genome-scale identification of single-copy oligos is the foundation of successful oligo-FISH experiments. Here, we introduce Chorus2, a software that is developed specifically for oligo selection.
View Article and Find Full Text PDFEven though the pulse-echo ultrasonic technique is commonly used for the assessment of metal structures, it has some inherent limitations. Vibro-acoustography (VA) is a relatively new ultrasonic technique which has demonstrated a great potential in revealing defects in objects, however it is traditionally used to analyze the integrity of specimens made of low-stiffness materials. This work presents the evaluation of the performance of VA technique for the inspection of a steel structure, which was manufactured with defects of known geometry on its inner surface.
View Article and Find Full Text PDFMeiotic chromosome pairing between homoeologous chromosomes was reported in many nascent allopolyploids. Homoeologous pairing is gradually eliminated and replaced by exclusive homologous pairing in well-established allopolyploids, an evolutionary process referred to as the diploidization of allopolyploids. A fundamental question of the diploidization of allopolyploids is whether and to what extent the DNA sequence variation among homoeologous chromosomes contribute to the establishment of exclusive homologous chromosome pairing.
View Article and Find Full Text PDFThe mechanical properties of biological tissues are fingerprints of certain pathologic processes. Ultrasound systems have been used as a non-invasive technique to both induce kilohertz-frequency mechanical vibrations and detect waves resulting from interactions with biological structures. However, existing methodologies to produce kilohertz-frequency mechanical vibrations using ultrasound require the use of variable-frequency, dual-frequency and high-power systems.
View Article and Find Full Text PDFEfficient and consistent chromosome identification is the foundation for successful cytogenetic studies. Fluorescent in situ hybridization (FISH) has been the most popular technique for chromosome identification in plants. Large insert genomic DNA clones, such as bacterial artificial chromosome (BAC) clones, and repetitive DNA sequences have been the most commonly used DNA probes for FISH.
View Article and Find Full Text PDFMaize was one of the first eukaryotic species in which individual chromosomes can be identified cytologically, which made maize one of the oldest models for genetics and cytogenetics research. Nevertheless, consistent identification of all 10 chromosomes from different maize lines as well as from wild Zea species remains a challenge. We developed a new technique for maize chromosome identification based on fluorescence in situ hybridization (FISH).
View Article and Find Full Text PDFPretreatment technologies prior to anaerobic digestion (AD) have been developed with the aim of enhancing biogas productivity and reducing the presence of pathogens in digested sludge. Among them, thermal hydrolysis (TH) appears as the most promising one. In wastewater treatment plants (WWTPs) sludge is the end point of many organic micropollutants (OMPs), which was proved to lead to important environmental and human risks since sludge is commonly used in agriculture.
View Article and Find Full Text PDFPotato ( L.) breeders often use dihaploids, which are 2× progeny derived from 4× autotetraploid parents. Dihaploids can be used in diploid crosses to introduce new genetic material into breeding germplasm that can be integrated into tetraploid breeding through the use of unreduced gametes in 4× by 2× crosses.
View Article and Find Full Text PDFThe aim of this study was to evaluate the effect of time of the day and their associated climatic conditions on spray deposition of two 2,4-D formulations, as well as the influence on weed control. The experiment was installed in the field in complete randomized design. Treatments were arranged in factorial design 8 × 2, with 20 repetitions.
View Article and Find Full Text PDFThere is still a lack of information about microbial interactions of anaerobic digestion microbiome during process disturbance which limits our ability to predict the mechanisms that drive community dynamics on these events. This paper aims to determine how an organic overloading affects these interactions and to characterize in detail the microbiome structure and diversity in sewage sludge anaerobic reactors during an acidosis event. Two identical sewage sludge anaerobic reactors were subjected to an organic loading shock by adding glycerol waste.
View Article and Find Full Text PDFAnalysis of chromosome pairing has been an important tool to assess the genetic similarity of homologous and homoeologous chromosomes in polyploids. However, it is technically challenging to monitor the pairing of specific chromosomes in polyploid species, especially for plant species with a large number of small chromosomes. We developed oligonucleotide-based painting probes for four different potato chromosomes.
View Article and Find Full Text PDFThe cultivated potato () has a complex genetic structure due to its autotetraploidy and vegetative propagation which leads to accumulation of mutations and a highly heterozygous genome. A high degree of heterozygosity has been considered to be the main driver of fitness and agronomic trait performance in potato improvement efforts, which is negatively impacted by genetic load. To understand the genetic landscape of cultivated potato, we constructed a gynogenic dihaploid (2 = 2 = 24) population from cv.
View Article and Find Full Text PDFCentromeres in most higher eukaryotes are composed of long arrays of satellite repeats from a single satellite repeat family. Why centromeres are dominated by a single satellite repeat and how the satellite repeats originate and evolve are among the most intriguing and long-standing questions in centromere biology. We identified eight satellite repeats in the centromeres of tetraploid switchgrass (Panicum virgatum).
View Article and Find Full Text PDFDeveloping the karyotype of a eukaryotic species relies on identification of individual chromosomes, which has been a major challenge for most nonmodel plant and animal species. We developed a novel chromosome identification system by selecting and labeling oligonucleotides (oligos) located in specific regions on every chromosome. We selected a set of 54,672 oligos (45 nt) based on single copy DNA sequences in the potato genome.
View Article and Find Full Text PDFBackground: Vibro-acoustography (VA) uses two co-focused ultrasound beams with slightly different frequencies. The beams interact and generate a low-frequency focus to excite an object.
Methods: A two-element confocal ultrasound transducer with central frequency at 3.
J Environ Sci Health B
December 2016
The objective of this study was to evaluate the effects of nozzle types and 2,4-D formulations on spray deposition on different targets. Two field experiments were carried out in a completely randomized design, and treatments were arranged in a factorial scheme. Species in experiment 1 were Sumatran fleabane (Conyza sumatrensis) and Brazil pusley (Richardia brasiliensis) and in experiment 2 were soybeans (Glycine max) and Benghal dayflower (Commelina benghalensis).
View Article and Find Full Text PDF