Publications by authors named "Guilherme B Saturnino"

Most approaches to optimize the electric field pattern generated by multichannel transcranial electric stimulation (TES) require the definition of a preferred direction of the electric field in the target region(s). However, this requires knowledge about how the neural effects depend on the field direction, which is not always available. Thus, it can be preferential to optimize the field strength in the target(s), irrespective of the field direction.

View Article and Find Full Text PDF

We interface the head modelling, coil models, Graphical User Interface (GUI), and post-processing capabilities of the SimNIBS package with the boundary element fast multipole method (BEM-FMM), implemented in a MATLAB-based module. The resulting pipeline combines the best of both worlds: the individualized head modelling and ease-of-use of SimNIBS with the numerical accuracy of BEM-FMM. The corresponding TMS (transcranial magnetic stimulation) modeling package is developed and made available online.

View Article and Find Full Text PDF

Transcranial brain stimulation (TBS) has been established as a method for modulating and mapping the function of the human brain, and as a potential treatment tool in several brain disorders. Typically, the stimulation is applied using a one-size-fits-all approach with predetermined locations for the electrodes, in electric stimulation (TES), or the coil, in magnetic stimulation (TMS), which disregards anatomical variability between individuals. However, the induced electric field distribution in the head largely depends on anatomical features implying the need for individually tailored stimulation protocols for focal dosing.

View Article and Find Full Text PDF

Background: Recording electroencephalography (EEG) from the targeted cortex immediately before and after focal transcranial electrical stimulation (TES) remains a challenge.

Methods: We introduce a hybrid stimulation-recording approach where a single EEG electrode is inserted into the inner electrode of a double-ring montage for focal TES. The new combined electrode was placed at the C3 position of the EEG 10-20 system.

View Article and Find Full Text PDF

Skull-remodeling surgery has been proposed to enhance the dose of tumor treating fields in glioblastoma treatment. This abstract describes the finite element methods used to plan the surgery and evaluate the treatment efficacy.

View Article and Find Full Text PDF

Detailed computational anatomical models of the entire head are needed for accurate in silico modeling in a variety of transcranial stimulation applications. Models from different subjects help to understand and account for population variability. To this end, we have developed a new library of head models of 20 individuals, segmented from co-aligned multi-modal medical image data.

View Article and Find Full Text PDF

Comparing electric field simulations from individualized head models against in-vivo intra-cranial recordings is considered the gold standard for direct validation of computational field modeling for transcranial brain stimulation and brain mapping techniques such as electro- and magnetoencephalography. The measurements also help to improve simulation accuracy by pinning down the factors having the largest influence on the simulations. Here we compare field simulations from four different automated pipelines against intracranial voltage recordings in an existing dataset of 14 epilepsy patients.

View Article and Find Full Text PDF

Transcranial electric stimulation (TES) can modulate intrinsic neural activity in the brain by injecting weak currents through electrodes attached to the scalp. TES has been widely used as a neuroscience tool to investigate how behavioural and physiological variables of brain function are modulated by electric stimulation of specific brain regions. For an unambiguous interpretation of TES experiments, it is important that the electric fields can be steered towards one or several brain regions-of-interest.

View Article and Find Full Text PDF

Objective: Transcranial magnetic stimulation (TMS) and transcranial electric stimulation (TES) modulate brain activity non-invasively by generating electric fields either by electromagnetic induction or by injecting currents via skin electrodes. Numerical simulations based on anatomically detailed head models of the TMS and TES electric fields can help us to understand and optimize the spatial stimulation pattern in the brain. However, most realistic simulations are still slow, and the role of anatomical fidelity on simulation accuracy has not been evaluated in detail so far.

View Article and Find Full Text PDF

Background: Recent research on neural and behavioral consequences of transcranial direct current stimulation (tDCS) has highlighted the impact of individual factors, such as brain anatomy which determines current field distribution and may thus significantly impact stimulation effects. Computational modeling approaches may significantly advance our understanding of such factors, but the association of simulation-based tDCS-induced fields and neurophysiological outcomes has not been investigated.

Objectives: To provide empirical evidence for the relationship between tDCS-induced neurophysiological outcomes and individually induced electric fields.

View Article and Find Full Text PDF

Transcranial electrical stimulation (TES) uses constant (TDCS) or alternating currents (TACS) to modulate brain activity. Most TES studies apply low-intensity currents through scalp electrodes (≤2 mA) using bipolar electrode arrangements, producing weak electrical fields in the brain (<1 V/m). Low-intensity TES has been employed in humans to induce changes in task performance during or after stimulation.

View Article and Find Full Text PDF

Objective: A study pertinent to the numerical modeling of cortical neurostimulation is conducted in an effort to compare the performance of the finite element method (FEM) and an original formulation of the boundary element fast multipole method (BEM-FMM) at matched computational performance metrics.

Approach: We consider two problems: (i) a canonic multi-sphere geometry and an external magnetic-dipole excitation where the analytical solution is available and; (ii) a problem with realistic head models excited by a realistic coil geometry. In the first case, the FEM algorithm tested is a fast open-source getDP solver running within the SimNIBS 2.

View Article and Find Full Text PDF

Uncertainty surrounding ohmic tissue conductivity impedes accurate calculation of the electric fields generated by non-invasive brain stimulation. We present an efficient and generic technique for uncertainty and sensitivity analyses, which quantifies the reliability of field estimates and identifies the most influential parameters. For this purpose, we employ a non-intrusive generalized polynomial chaos expansion to compactly approximate the multidimensional dependency of the field on the conductivities.

View Article and Find Full Text PDF

Transcranial Magnetic Stimulation (TMS) excites populations of neurons in the stimulated cortex, and the resulting activation may spread to connected brain regions. The distributed cortical response can be recorded with electroencephalography (EEG). Since TMS also stimulates peripheral sensory and motor axons and generates a loud "click" sound, the TMS-evoked EEG potentials (TEPs) reflect not only neural activity induced by transcranial neuronal excitation but also neural activity due to somatosensory and auditory processing.

View Article and Find Full Text PDF

Anatomically realistic volume conductor models of the human head are important for accurate forward modeling of the electric field during transcranial brain stimulation (TBS), electro- (EEG) and magnetoencephalography (MEG). In particular, the skull compartment exerts a strong influence on the field distribution due to its low conductivity, suggesting the need to represent its geometry accurately. However, automatic skull reconstruction from structural magnetic resonance (MR) images is difficult, as compact bone has a very low signal in magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Large-scale synchronization of neural oscillations is a key mechanism for functional information exchange among brain areas. Dual-site Transcranial Alternating Current Stimulation (ds-TACS) has been recently introduced as non-invasive technique to manipulate the temporal phase relationship of local oscillations in two connected cortical areas. While the frequency of ds-TACS is matched, the phase of stimulation is either identical (in-phase stimulation) or opposite (anti-phase stimulation) in the two cortical target areas.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two types of non-invasive transcranial brain stimulation (TBS). They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large cerebral lesions, which are commonly accompanied by a secondary enlargement of the ventricles and atrophy.

View Article and Find Full Text PDF

Objective: The present work proposes a new clinical approach to TTFields therapy of glioblastoma. The approach combines targeted surgical skull removal (craniectomy) with TTFields therapy to enhance the induced electrical field in the underlying tumor tissue. Using computer simulations, we explore the potential of the intervention to improve the clinical efficacy of TTFields therapy of brain cancer.

View Article and Find Full Text PDF

Objective: To evaluate a modified electrode montage with respect to its effect on tACS-dependent modulation of corticospinal excitability and discomfort caused by neurosensory side effects accompanying stimulation.

Methods: In a double-blind cross-over design, the classical electrode montage for primary motor cortex (M1) stimulation (two patch electrodes over M1 and contralateral supraorbital area) was compared with an M1 centre-ring montage. Corticospinal excitability was evaluated before, during, immediately after and 15 minutes after tACS (10 min.

View Article and Find Full Text PDF

Electric field calculations based on numerical methods and increasingly realistic head models are more and more used in research on Transcranial Magnetic Stimulation (TMS). However, they are still far from being established as standard tools for the planning and analysis in practical applications of TMS. Here, we start by delineating three main challenges that need to be addressed to unravel their full potential.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) uses electrode pads placed on the head to deliver weak direct current to the brain and modulate neuronal excitability. The effects depend on the intensity and spatial distribution of the electric field. This in turn depends on the geometry and electric properties of the head tissues and electrode pads.

View Article and Find Full Text PDF