Publications by authors named "Guilhem Poy"

Confinement and hydrodynamic interactions often play an important role in the fluctuation dynamics of soft matter systems, which can typically be studied using light scattering techniques. With experimental and theoretical methodologies, I demonstrate here that chirality is an additional critical parameter that leads to diverging decay times and correlation lengths in chiral liquid crystal cells with a fully unwound cholesteric helix. This study combines light scattering measurements made in a tailored microscope geometry and theoretical calculations of the decay dynamics of chiral orientational fluctuations-including hydrodynamics-to establish the existence of two soft chiral modes of fluctuations driving the destabilization of the unwound cholesteric.

View Article and Find Full Text PDF

The structure of the nematic (cholesteric) drops that form at the clearing temperature of a mixture of the bent-core molecule CB7CB and the rodlike molecule 8CB doped with a surfactant is optically determined. Using experimental observations and numerical simulations, it is demonstrated that the director field inside these drops is not escaped concentric, as previously proposed, but twisted bipolar. The Lehmann rotation of these drops in the presence of a temperature gradient is described.

View Article and Find Full Text PDF

We experimentally and numerically show that chirality can play a major role in the nonlinear optical response of soft birefringent materials, by studying the nonlinear propagation of laser beams in frustrated cholesteric liquid crystal samples. Such beams exhibit a periodic nonlinear response associated with a bouncing pattern for the optical fields, as well as a self-focusing effect enhanced by the chirality of the birefringent material. Our results open new possible designs of nonlinear optical devices with low power consumption and tunable interactions with localized topological solitons.

View Article and Find Full Text PDF

We present a unified theoretical framework for paraxial and wide-angle beam propagation methods in inhomogeneous birefringent media based on a minimal set of physical assumptions. The advantage of our schemes is that they are based on differential operators with a clear physical interpretation and easy numerical implementation based on sparse matrices. We demonstrate the validity of our schemes on three simple two-dimensional birefringent systems and introduce an example of application on complex three-dimensional systems by showing that topological solitons in frustrated cholesteric liquid-crystals can be used as light waveguides.

View Article and Find Full Text PDF

Patterned liquid crystal (LC) configurations find widespread applications in functional devices such as lenses, gratings, displays and soft-robots. In combination with external stimuli such as an applied electric field, photo-alignment at the surfaces offers an attractive way to stabilize different LC structures in the bulk of a device. Herein, a planar LC cell is developed using a photo-alignment layer at the bottom substrate and a rubbed nylon film at the top substrate.

View Article and Find Full Text PDF

We propose an efficient method to simulate light propagation in lossless and non-scattering uniaxial birefringent media, based on a standard ray-tracing technique supplemented by a newly-derived transport equation for the electric field amplitude along a ray and a tailored interpolation algorithm for the reconstruction of the electromagnetic fields. We show that this algorithm is accurate in comparison to a full solution of Maxwell's equations when the permittivity tensor of the birefringent medium typically varies over a length much bigger than the wavelength. We demonstrate the usefulness of our code for soft matter by comparing experimental images of liquid crystal droplets with simulated bright-field optical micrographs, and conclude that our method is more general than the usual Jones method, which is only valid under polarised illumination conditions.

View Article and Find Full Text PDF

We present a numerical method to compute defect-free textures inside cholesteric domains of arbitrary shape. This method has two interesting properties, namely a robust and fast quadratic convergence to a local minimum of the Frank free energy, thanks to a trust region strategy. We apply this algorithm to study the texture of cholesteric droplets in coexistence with their isotropic liquid in two cases: when the anchoring is planar and when it is tilted.

View Article and Find Full Text PDF

We propose a general method to calculate the drift velocity of cholesteric textures subjected to a temperature gradient when the backflow effects are negligible. The textures may be Translationally Invariant Configurations (TICs) or localized structures such as cholesteric droplets or cholesteric fingers. For the TICs and for the droplets, the drift is rotational while for the fingers, the drift is translational.

View Article and Find Full Text PDF

Suspended droplets of cholesteric (chiral nematic) liquid crystals spontaneously rotate in the presence of a heat flux due to a temperature gradient, a phenomenon known as the Lehmann effect. So far, it is not clear whether this effect is due to the chirality of the phase and the molecules or only to the chirality of the director field. Here, we report the continuous rotation in a temperature gradient of nematic droplets of a lyotropic chromonic liquid crystal featuring a twisted bipolar configuration.

View Article and Find Full Text PDF

We performed a Fluorescence Recovery After Photobleaching (FRAP) experiment during the Lehmann rotation of cholesteric droplets in thermodynamic coexistence with the isotropic liquid and subjected to a temperature gradient. By creating and tracking bleached spots near the surface of banded droplets (in which the cholesteric helix is perpendicular to the gradient) and concentric circle droplets oriented by an electric field (in which the helix is parallel to the gradient), we found that neither type of droplet rotates as a solid. This result shows that the texture rotation is mainly due to the local director rotation.

View Article and Find Full Text PDF

Shape measurements after the coalescence of isotropic droplets embedded in a thin sample of a homeotropic nematic phase provides a tool to measure the nematic-isotropic surface tension. In addition, this experiment allows us to check the scaling laws recently given by Brun et al. [P.

View Article and Find Full Text PDF

We study the role of the sample thickness d and of the concentration C of chiral molecules during the Lehmann rotation of cholesteric droplets of radius R subjected to a temperature gradient G→. Two configurations are studied depending on how the helix is oriented with respect to G→. The first result is that, at fixed C and R, the rotation velocity ω increases with d when the helix is parallel to G→, whereas it is independent of d when the helix is perpendicular to G→.

View Article and Find Full Text PDF