J Biomed Mater Res B Appl Biomater
August 2014
PURION(®) processed dehydrated human amnion/chorion membrane (dHACM; MiMedx Group, Marietta, GA) tissue products were analyzed for the effectiveness of the PURION(®) process in retaining the native composition of the amniotic membrane and preserving bioactivity in the resulting products. dHACM was analyzed for extracellular matrix (ECM) composition through histological staining and for growth factor content via multiplex ELISA arrays. Bioactivity was assessed by evaluating endogenous growth factor production by human dermal fibroblasts in response to dHACM and for thermal stability by mechanical tests and in vitro cell proliferation assays.
View Article and Find Full Text PDFOur purpose was to compare healing characteristics of diabetic foot ulcers treated with dehydrated human amniotic membrane allografts (EpiFix®, MiMedx, Kennesaw, GA) versus standard of care. An IRB-approved, prospective, randomised, single-centre clinical trial was performed. Included were patients with a diabetic foot ulcer of at least 4-week duration without infection having adequate arterial perfusion.
View Article and Find Full Text PDFStudy Design: This study was conducted as a controlled, prospective investigation to show the safety and efficacy of a polyvinyl alcohol (PVA) device in a sheep model.
Objective: To evaluate the ability of a permanent PVA hydrogel barrier to reduce the risk of potential vessel damage during anterior vertebral revision surgery, to provide a nonadhesive barrier at the surgical site, and to create a surgical revision plane of dissection.
Background: The development of scar tissue and adhesions presents a significant postoperative problem in spine surgery, where adhesion involvement of overlying structures can cause pain, neurovascular complications, and present a difficult surgical environment during revisions.
Surgical treatments for lower back pain can be distributed into two main groups: fusion (arthrodesis) and disc replacement (arthroplasty). The objective of this study was to compare, under severe loading conditions, the biomechanics of the lumbar spine treated either by fusion or total disc replacement (TDR). A three-dimensional model of a two-level ligamentous lumbar segment was created and simulated through static analyses with the finite-element method (FEM) software ABAQUS.
View Article and Find Full Text PDF