Publications by authors named "Guilgur L"

Article Synopsis
  • Male germ cells across animal species share a common origin, indicating they likely follow a conserved genetic program crucial for their identity.
  • The research employs network analysis of the spermatocyte transcriptome from various species to explore the evolutionary origin of male germ cells at the molecular level, revealing a core set of genes and functional associations that have been preserved through evolution.
  • By disrupting male germ cell identity, the study identifies 161 new spermatogenesis-related genes and highlights their implications for human infertility, while promoting a cross-species approach that can be applied to other cell types and diseases.
View Article and Find Full Text PDF

Mitotic chromatin is largely assumed incompatible with transcription due to changes in the transcription machinery and chromosome architecture. However, the mechanisms of mitotic transcriptional inactivation and their interplay with chromosome assembly remain largely unknown. By monitoring ongoing transcription in Drosophila early embryos, we reveal that eviction of nascent mRNAs from mitotic chromatin occurs after substantial chromosome compaction and is not promoted by condensin I.

View Article and Find Full Text PDF

Studying aneuploidy during organism development has strong limitations because chronic mitotic perturbations used to generate aneuploidy usually result in lethality. We developed a genetic tool to induce aneuploidy in an acute and time-controlled manner during Drosophila development. This is achieved by reversible depletion of cohesin, a key molecule controlling mitotic fidelity.

View Article and Find Full Text PDF

The fidelity of mitosis depends on cohesive forces that keep sister chromatids together. This is mediated by cohesin that embraces sister chromatid fibers from the time of their replication until the subsequent mitosis [1-3]. Cleavage of cohesin marks anaphase onset, where single chromatids are dragged to the poles by the mitotic spindle [4-6].

View Article and Find Full Text PDF

The transition from fertilized oocyte to totipotent embryo relies on maternal factors that are synthetized and accumulated during oocyte development. Yet, it is unclear how oocytes regulate the expression of maternal genes within the transcriptional program of oogenesis. Here, we report that the Trithorax group protein dMLL3/4 (also known as Trr) is essential for the transition to embryo fate at fertilization.

View Article and Find Full Text PDF

Oocytes are arrested for long periods of time in the prophase of the first meiotic division (prophase I). As chromosome condensation poses significant constraints to gene expression, the mechanisms regulating transcriptional activity in the prophase I-arrested oocyte are still not entirely understood. We hypothesized that gene expression during the prophase I arrest is primarily epigenetically regulated.

View Article and Find Full Text PDF

The development of living organisms requires a precise coordination of all basic cellular processes, in space and time. Early embryogenesis of most species with externally deposited eggs starts with a series of extremely fast cleavage cycles. These divisions have a strong influence on gene expression as mitosis represses transcription and pre-mRNA processing.

View Article and Find Full Text PDF

Drosophila syncytial nuclear divisions limit transcription unit size of early zygotic genes. As mitosis inhibits not only transcription, but also pre-mRNA splicing, we reasoned that constraints on splicing were likely to exist in the early embryo, being splicing avoidance a possible explanation why most early zygotic genes are intronless. We isolated two mutant alleles for a subunit of the NTC/Prp19 complexes, which specifically impaired pre-mRNA splicing of early zygotic but not maternally encoded transcripts.

View Article and Find Full Text PDF

Epithelial cells mostly orient the spindle along the plane of the epithelium (planar orientation) for mitosis to produce two identical daughter cells. The correct orientation of the spindle relies on the interaction between cortical polarity components and astral microtubules. Recent studies in mammalian tissue culture cells suggest that the apically localised atypical protein kinase C (aPKC) is important for the planar orientation of the mitotic spindle in dividing epithelial cells.

View Article and Find Full Text PDF

Sex steroids are known to be involved in gonadal differentiation in fish, but whether androgens are early mediators of testis differentiation remains unclear. We studied the sex-related developmental variations in the gene expression of two key enzymes involved in steroids and androgen synthesis (cyp11a1 and cyp11b1) in trunks and isolated gonads of pejerrey (Odontesthes bonariensis) larvae during and after the sex determination period. Also, and in order to have a better characterization of this process we studied the expression of Sertoli (dmrt1, amh, sox9) and Leydig (nr5a1 or sf-1) cell markers as well as a gene with higher expression in females (cyp19a1a).

View Article and Find Full Text PDF

The present study examined the differential mRNA expression levels of three forms of GnRH (sGnRH, pjGnRH and cGnRH-II) and two forms of GnRH receptor (pjGnRH-R I and pjGnRH-R II) in the brain, pituitary, and ovaries of pejerrey in relation to the reproductive status. The analysis revealed the presence of significant amounts of mRNA of the three GnRH forms while the ovaries showed only two (sGnRH and pjGnRH). The GnRH receptor II was found ubiquitously in the brain, pituitary, and ovaries while the form I was detected only in the brain.

View Article and Find Full Text PDF

Most vertebrates express two gonadotropin releasing hormone (GnRH) variants in brain tissue but there is an increasing number of fish species for which a third GnRH form has been detected. We characterized the precursors (cDNAs) of all three forms expressed in the brain of the pejerrey (silverside) fish, Odontesthes bonariensis (Atheriniformes): type I (GnRH-I; 440 bp), type II (GnRH-II; 529 bp), and type III (GnRH-III; 515 bp). The expression of these GnRHs precursors was also observed in peripheral tissues related to reproduction (gonads), visual and chemical senses (eye and olfactory epithelium), and osmoregulation (gill), suggesting that in teleost fish and possibly other vertebrates GnRH mediates directly or indirectly many other functions besides reproduction.

View Article and Find Full Text PDF

About 50years after Harris's first demonstration of its existence, GnRH has strongly stimulated the interest and imagination of scientists, resulting in a high number of studies in an increasing number of species. For the endocrinologist, GnRH, via its actions on the synthesis and release of pituitary gonadotrophins, is first an essential hormone for the initiation and maintenance of the reproductive axis, but recent data suggest that GnRH emerged in animals lacking a pituitary. In this context, this review intends to explore the current status of knowledge on GnRH and GnRH receptors in metazoa in order to see if it is possible to draw an evolutive scenario according to which GnRH actions progressively evolved from the control of simple basic functions in early metazoa to an indirect mean of controlling gonadal activity in vertebrates through a sophisticated network of finely tuned neurons developing in a rather fascinating way.

View Article and Find Full Text PDF

The second GnRH form, originally identified in chickens (cGnRH-II or GnRH-II), is the most ubiquitous peptide of the GnRH neuropeptide family, being present from jawed fish to human beings. However, the presence of GnRH-II in such an important experimental model as the rat is still an object of discussion. Here we present chromatographic, immunologic and biologic activity evidence supporting the expression of GnRH-II in the rat.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) is the final common signaling molecule used by the brain to regulate reproduction in all vertebrates. Until now, a total of 24 GnRH structural variants have been characterized from vertebrate, protochordate and invertebrate nervous tissue. Almost all vertebrates already investigated have at least two GnRH forms coexisting in the central nervous system.

View Article and Find Full Text PDF

This work deals with a family of neuropeptides, gonadotropin-releasing hormone (GnRH), that play a key role in the development and maintenance of reproductive function in vertebrates. 2. Until now, a total of 16 GnRH structural variants have been isolated and characterized from vertebrate and protochordate nervous tissue.

View Article and Find Full Text PDF