Publications by authors named "Guilan Xue"

Biomimetic piezoelectric scaffolds provide a noninvasive method for cell regulation and tissue regeneration. Herein, considering the gradually varied piezoelectric properties of native cartilage and bone tissues, we fabricated biomimetic electrospun poly(L-lactic acid) (PLLA) nanofibrous mats with gradient piezoelectric properties to induce the integrated osteochondral differentiation of rat mesenchymal stem cells (MSCs). Nanofibrous mats are polarized under electric fields with linear variation of strength to generate gradient piezoelectricity, and cell adhesion-derived contraction forces could produce gradient piezoelectric potential on the scaffolds.

View Article and Find Full Text PDF

Electrospun nanofibers exhibiting piezoelectricity are a specific class of smart materials which could provide electric stimulation to cells in a noninvasive way and contribute to tissue regeneration. During cell-material interaction, the materials display electromechanical behavior by transforming cell adhesion force into surface charge. In the process, how the cell adhesion states and the electromechanical properties of scaffolds determine the actual piezoelectric potential implemented on a cell is still unclear.

View Article and Find Full Text PDF

Geometry and mechanical property have emerged as important parameters in designing nanocarriers, in addition to their size, surface charge, and hydrophilicity. However, inconsistent and even contradictory demands regarding the shape and stiffness of nanoparticles have been noted in blood circulation, tumor accumulation, and tumor cell internalization. Herein, CaCO nanorods (NRs) with an aspect ratio of around 2.

View Article and Find Full Text PDF

Cell adhesion-mediated piezoelectric stimulation provides a noninvasive method for in situ electrical regulation of cell behavior, offering new opportunities for the design of smart materials for tissue engineering and bioelectronic medicines. In particular, the surface potential is mainly dominated by the inherent piezoelectricity of the biomaterial and the dynamic adhesion state of cells. The development of an efficient and optimized material interface would have important implications in cell regulation.

View Article and Find Full Text PDF

The mechanical and electrical properties of biomaterials are essential in cell function regulation during cell-biomaterial interaction. However, previous studies focused on probing cell regulation mechanisms under one type of stimulus, and a platform that enables the study of electromechanical coupling effects of a biomaterial on cells is still lacking. Here, we present an in-situ electromechanical testing and loading system to image live cells when co-cultured with electroactive biomaterials.

View Article and Find Full Text PDF