Graphite and plastic recycled from spent lithium ion batteries were used to synthesize zero-valent iron/graphite (ZVI/G), zero-valent iron/plastic-based carbon (ZVI/P), and zero-valent iron/graphite and plastic-based carbon (ZVI/GP) with iron oxide through carbothermic reduction. The aim of preparing these catalysts is to improve the performance of ZVI in the removal of 4-chlorophenol (4-CP) in water through heterogeneous Fenton reactions. The structural and textural properties of materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N adsorption/desorption, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFZero valent iron/carbon composites were successfully synthesized from commercial iron oxide and graphite (ZVI/C) and also by using graphite obtained from spent Li-ion batteries and iron oxide from mill scale (ZVI/C-X) as a new approach for the valorization of these waste. The composites were synthesized through carbothermic reactions and tested as catalysts for the degradation of ibuprofen from water by Fenton reaction. The optimal conditions for synthesizing ZVI/C composites were a temperature of 1000 °C maintained for 2 h.
View Article and Find Full Text PDFThe phytohormone abscisic acid (ABA) and the lipoxygenases (LOXs) pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive.
View Article and Find Full Text PDF