Carbon fiber reinforced epoxy resin composites (CFRP) demonstrate superior wear resistance and fatigue durability, which are anticipated to markedly enhance the service life of structures under complex conditions. In the present paper, the friction behaviors and wear mechanisms of CFRP under different applied loads, sliding speeds, service temperatures, and water lubrication were studied and analyzed in detail. The results indicated that the tribological properties of CFRP were predominantly influenced by the applied loads, as the tangential displacement generated significant shear stress at the interface of the friction pair.
View Article and Find Full Text PDFRamie-fiber-reinforced polymer composites (RFRP) have the advantages of low price and low energy consumption, but they have high hydrophilicity due to their special chemical composition. In order to study the effect of water absorption on the performance degradation of RFRP in a hydrothermal environment, the authors prepared RFRP sheets by compression molding. Manufactured composites were exposed to a hydrothermal environment with a temperature of 40 °C and a humidity of 50% RH, 85% RH and 98% RH to study the water absorption and diffusion, mechanical properties (tensile properties, flexural properties and shear properties) of the RFRP, and their mechanical properties after drying.
View Article and Find Full Text PDFSuperhydrophobic coatings play a crucial role in self-cleaning and anti-icing infrastructure areas under harsh service environments such as very low temperature, strong wind, and sand impact. In the present study, an environment-friendly and self-adhesive superhydrophobic polydopamine coating inspired by mussels had been successfully developed and its growth process was accurately regulated by formula and reaction ratio optimization. The preparation characteristic and reaction mechanism, surface wetting behavior, multi-angle mechanical stability, anti-icing, and self-cleaning tests were systematically investigated.
View Article and Find Full Text PDFTraditional steel surface treatment (e.g., sand blasting, or silane treatment) was regarded as an effective method to improve the bonding strength of steel-epoxy single-lap joints.
View Article and Find Full Text PDFThe choice of a manufacturing process, raw materials, and process parameters affects the quality of produced pre-consolidated tapes used in thermoplastic pultrusion. In this study, we used two types of pre-consolidated GF/PP tapes-commercially available (ApATeCh-Tape Company, Moscow, Russia) and inhouse-made tapes produced from commingled yarns (Jushi Holdings Inc., Boca Raton, FL, USA)-to produce pultruded thermoplastic Ø 6 mm bars and 75 mm × 3.
View Article and Find Full Text PDFThe durability of fiber-reinforced polymer (FRP) composites is significantly dependent on the structures and properties of the resin matrix. In the present paper, the effects of physical or chemical interactions between the molecular chain of the epoxy resin matrix and water molecules or alkaline groups on the water absorption, mechanical structures, and microstructures of epoxy resin samples were studied experimentally. The results showed that the water uptake curves of the epoxy resin immersed in water and an alkali solution over time presented a three-stage variation.
View Article and Find Full Text PDFThe superior mechanical properties of multi-walled carbon nanotubes (MWCNTs) play a significant role in the improvement of the mechanical and thermal stability of an epoxy matrix. However, the agglomeration of carbon nanotubes (CNTs) in the epoxy is a common challenge and should be resolved to achieve the desired enhancement effect. The present paper investigated the thermal, mechanical, and water uptake properties of epoxy nanocomposites with surfactant-modified MWCNTs.
View Article and Find Full Text PDFApplication of glass- or carbon-fiber-reinforced polymer (GFRP/CFRP) bars makes the direct use of seawater and sea sand concrete (SWSSC) in construction feasible, which is of high interest in order to conserve the limited resources of fresh water and river sand. The present paper performed the life cycle assessment (LCA) of constructing three kinds of beams (GFRP/CFRP bar-reinforced SWSSC beams, and steel bar-reinforced common concrete (SRC) beam) in marine environments to show the environmental benefits of using FRP bar-reinforced SWSSC beams in marine environments. According to ISO 14040 and ISO 14044, stages including production, transportation, construction, use and end-of-life are within the LCA's boundary.
View Article and Find Full Text PDFMaterials (Basel)
March 2020
Flax fiber sheets provide the advantages of high specific strength, a short growth cycle, environmental friendliness, wide availability, and low cost. Therefore, in this study, the shear capacities of reinforced concrete (RC) beams strengthened with ordinary flax fiber sheets, flax fiber sheets grafted with nano-TiO, and unidirectional basalt fiber sheets were compared. The bearing characteristics and failure modes of RC beams strengthened with flax fiber sheets were investigated.
View Article and Find Full Text PDFThe coupled effects of temperature variation and pre-sustained loading on the bond between basalt fiber reinforced polymer (BFRP) sheets and a concrete substrate were studied. Single lap-shear test specimens were exposed to temperatures of 15, 30, 40, 50, and 60 °C for 3 h with pre-sustained loading at 35% of the ultimate load capacity (). Compared with the case of 15 °C, the interfacial fracture energy of the specimens at 30 and 40 °C increased by 46% and 11%, respectively, whereas those reduced by 73% and 77% at 50 and 60 °C, respectively.
View Article and Find Full Text PDFThe usage of polymer composites in various engineering fields has increased. However, the long-term service performance of such materials under aggressive conditions is still poorly understood, which limits the development of safe and economically effective designs. In this study, the aging of an epoxy resin and its carbon fiber-reinforced polymer (CFRP) composites upon immersion in water, acidic, and alkaline solutions was evaluated at different temperatures.
View Article and Find Full Text PDFBonding of carbon fiber reinforced polymer (CFRP) plates to a concrete member is a widely used strengthening method. CFRP plates used in construction degrade due to harsh environmental conditions such as high temperature or alkaline solution seepage from concrete. However, the adhesive between CFRP plates and concrete may have a positive effect on the durability performance of CFRP plates.
View Article and Find Full Text PDFUnidirectional pultruded glass/carbon hybrid fiber-reinforced polymer (HFRP) bars with a diameter of 19 mm have recently been developed for various structural applications. In this study, the creep behavior of HFRP bars caused by bending was experimentally evaluated under different conditions. Our creep study included freeze-thaw preconditioned and unconditioned HFRP bars.
View Article and Find Full Text PDFFlax fiber has high sensitivity to moisture, and moisture uptake leads to the decrease of mechanical properties and distortion in shape. This paper attempts to graft flax fabric with nano-clay, with assistance from a silane-coupling agent, in order to improve hygrothermal resistance. The nano-clay grafted flax fabric reinforced epoxy (FFRP) composite produced through vacuum assisted resin infusion (VARI) process were subjected to 80% RH chamber for 12 weeks at 20, 40 and 70 °C, respectively.
View Article and Find Full Text PDFA pultruded unidirectional carbon/glass reinforced epoxy hybrid FRP rod with 19 mm of diameter was developed for a sucker rod and lifting oil wells. The rod possesses a 12-mm diameter carbon fiber core and a 3.5-mm thick outer shell.
View Article and Find Full Text PDFIn the present paper, a vinyl ester (VE) resin, potentially used as a resin matrix for fiber-reinforced polymer (FRP) composite sucker rods in oil drilling, FRP bridge cables, or FRP marine structures, was investigated on its resistance to water and alkaline solution immersion in terms of water uptake, hydrothermal expansion, and mechanical properties. A two-stage diffusion model was applied to simulate the water uptake processes. Alkaline solution immersion led to a slightly higher mass loss (approx.
View Article and Find Full Text PDFIn the present article, the degradation of the tensile properties of polyacrylonitrile (PAN)-based carbon fibers at elevated temperatures in air was studied experimentally and modeled. The tensile properties, mass loss, surface morphology, and elements and functional groups of carbon fibers were characterized. It can be concluded that the tensile strength and modulus of the carbon fibers decreased remarkably when the exposure temperature exceeded 500 °C.
View Article and Find Full Text PDFMaterials (Basel)
February 2019
The bond between carbon fiber reinforced polymer (CFRP) and concrete is significantly and adversely affected by thermal cycles in air and water. In the present study, the effects of thermal cycles in air or water on the bond performance between CFRP and concrete were examined. A single-lap shear test was adopted to evaluate the performance of the CFRP-concrete bond.
View Article and Find Full Text PDFIn many applications, carbon fiber reinforced polymer (CFRP) composite materials suffer from the combined effects of sustained bending and immersion. In the present study, pultruded epoxy- and polyurethane (PU)-based CFRP plates were studied for their long-term performances, subjected to the combined effects of water/seawater immersion and sustained bending (0%, 30%, and 58% of the ultimate strain). The water uptake and the evolution of the mechanical properties were investigated.
View Article and Find Full Text PDF