Publications by authors named "Guihua Yang"

Lignin, the most abundant natural aromatic polymer, holds considerable promise for applications in various industries. The primary obstacle to the valorization of lignin into useful materials is its low molecular weight and diminished chemical reactivity, attributable to its intricate structure. This study aimed to treat lignocellulosic biomass using a switchable solvent (DBU-HexOH/HO) derived from the non-nucleophilic superbase 1,8-diazabicyclo [5.

View Article and Find Full Text PDF

Using renewable materials as primary components for constructing superhydrophobic coatings is an effective strategy for enhancing the environmental sustainability of anti-icing technologies. Alkali lignin, a by-product of the pulp and paper industry, was graft-modified with 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane to create a robust and multifunctional superhydrophobic coating for effective anti-icing. The results demonstrated that the industrial lignin-based coating achieved a contact angle of 162.

View Article and Find Full Text PDF

The design of innovative pH-sensitive hydrogels for oral drug delivery is particularly promising for the treatment of intestinal diseases. The traditional pH-responsive hydrogels still have some problems such as low biocompatibility, complex preparation process and poor therapeutic effect, so a new method needs to be developed to solve these problems. Here, a pH-sensitive hemicellulose/graphene oxide (HC/GO) composite hydrogel (HGCH) was prepared through a one-step strategy.

View Article and Find Full Text PDF

Furfural is a renewable platform compound that can be derived from lignocellulosic biomass. The highly functionalized molecular structure of furfural enables us to prepare a variety of high value-added chemicals, which will help realize biomass high-value utilization, and alleviate energy and environmental problems. This paper reviews the research progress on furfural production and upgrading to C5 chemicals from the catalyst perspective.

View Article and Find Full Text PDF

The ethynylation of formaldehyde catalyzed by Cu-based catalysts is an important synthesis method for 1,4-butynediol relating to high-value-added chemicals. In this work, a series of CuM/SiO (M = Bi, Mg, Mn) catalysts were prepared by a deposition-precipitation method and applied in the ethynylation reaction. The effects of different promoters (Bi, Mg, Mn) on the catalytic activity were investigated.

View Article and Find Full Text PDF

Electrochemical actuators (ECAs) with low voltage actuation and large deformation ranges generally require electrode materials with high ion kinetic energy transport, high charge storage, and excellent electrochemical-mechanical properties. However, the fabrication of such actuators remains a major challenge. In the present work, hybrid electroactive films were fabricated by self-assembling one-dimensional functionalized cellulose nanofibrils (CNFs) with two-dimensional MXene (TiCT).

View Article and Find Full Text PDF

Marine microbial secondary metabolites with diversified structures have been found as promising sources of anti-inflammatory lead compounds. This review summarizes the sources, chemical structures, and pharmacological properties of anti-inflammatory natural products reported from marine microorganisms in the past three years (2021-2023). Approximately 252 anti-inflammatory compounds, including 129 new ones, were predominantly obtained from marine fungi and they are structurally divided into polyketides (51.

View Article and Find Full Text PDF

An innovative binary biol-based deep eutectic solvent (DES), specifically ethylamine hydrochloride-ethylene glycol (EaCl-EG), was developed for efficient pretreatment of eucalyptus biomass. This DES exhibited superior performance in achieving high delignification (85.0%) and xylan removal (80.

View Article and Find Full Text PDF

Castor stalk from hemp plants is an attractive lignocellulosic feedstock for biomass refining valorization due to its similar chemical composition to hardwoods. In this study, the castor stalk fibers were pretreated with efficient dual-functional ethanolamine to achieve delignification and swelling of the cellulosic fibers, followed by cellulase enzymatic digestion for biomass conversion. Experimental results showed that ethanolamine pretreatment at 160 °C for 1 h effectively removed 69.

View Article and Find Full Text PDF

Highly-efficient and cost-effective electrocatalysts toward the oxygen evolution reaction (OER) are crucial for advancing sustainable energy technologies. Herein, a novel approach leveraging corrosion engineering is presented to facilitate the in situ growth of amorphous cobalt-iron hydroxides on nickel-iron foam (CoFe(OH)-m/NFF) within a NaCl-CoCl aqueous solution. By adjusting the concentration of the solution, the compositions can tailored and morphologies of these hydroxides to optimize the OER electrocatalytic performance.

View Article and Find Full Text PDF

Traditional packaging materials feed the growing global food protection. However, these packaging materials are not conducive to environment and have not the ability to kill bacteria. Herein, a green and simple strategy is reported for food packaging protection and long-term antibacterial using carboxymethylcellulose-based photothermal film (CMC@CuS NPs/PVA) that consists of carboxymethyl cellulose (CMC) immobilized copper sulfide nanoparticles (CuS NPs) and polyvinyl alcohol (PVA).

View Article and Find Full Text PDF

Solar interfacial evaporation strategy (SIES) has shown great potential to deal with water scarcity and energy crisis. Biobased hydrogel derived interfacial evaporator can realize efficient evaporation due to the unique structure- properties relationship. As such, increasing studies have focused on water treatment or even potential accompanying advanced energy storage applications with respect of efficiency and mechanism of bio-based hydrogel derived interfacial evaporation from microscale to molecular scale.

View Article and Find Full Text PDF

Herein, wheat straw residue and pulping waste liquid were collected from pulping mill and mixed to prepare bio-based granular fuels by using compression molding technology, and to explore the comprehensive utilization of the industrial waste of pulping and papermaking. The effects of pulping waste liquid on granular fuel properties were analyzed systemically. Further study of the function of pulping waste liquid, cellulose and hemicellulose was used to replace wheat straw residue and avoid the interference factors.

View Article and Find Full Text PDF

The scientific community is pursuing significant efforts worldwide to develop environmentally viable film materials from biomass, particularly transparent, high-performance regenerated cellulose (RC) films, to replace traditional plastics. However, the inferior mechanical performance and hydrophilic nature of RC films are generally not suitable for use as a substitute for plastics in practical applications. Herein, lignin homogenization is used to synthesize high-performance composite films.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) are promising for lignin dissolution and extraction. However, they usually possess high polarity and are difficult to recycle. To overcome this drawback, a variety of switchable ionic liquids (SILs) composed of 1,8-diazabicyclo[5.

View Article and Find Full Text PDF

Structural design and morphology engineering are considered significant strategies to boost the catalytic performance of electrocatalysts toward the oxygen evolution reaction. Inspired by the natural porosity and abundant functional groups, herein, hollow N-doped carbon nano-mushroom (NCNM) encapsulated hybrid sulfide particles rooted into a carbonized wood (CW) framework were prepared through simple impregnation followed by calcination. The as-prepared self-supporting electrodes present ultrahigh activity and robust stability.

View Article and Find Full Text PDF

As a green and renewable nanomaterial, cellulose nanocrystals (CNC) have received numerous attention due to the unique structural features and superior physicochemical properties. Conventionally, CNC was isolated from lignocellulosic biomass mostly depending on sulfuric or hydrochloric acid hydrolysis. Although this approach is effective, some critical issues such as severe equipment corrosion, excessive cellulose degradation, serious environmental pollution, and large water usage are inevitable.

View Article and Find Full Text PDF

Grasses are potential candidate to replace wood as a raw material for pulping and paper making, and several processes have been developed to produce grass pulp. In this study, wheat straw was used as raw material, and the possibility of sequential treatment with a mechanical method and deep eutectic solvent (DES) to prepare high-quality dissolving pulp was explored. Firstly, the wheat straw was mechanically treated, and then the wheat straw was delignified using a choline chloride-lactic acid deep eutectic solvent.

View Article and Find Full Text PDF

Nanocellulose (NC) is the desired building block for novel biomaterials. The morphology of NC is one of the core parameters impacting the functionality and property of engineered functional materials. This work aims to reveal the relationship between the product morphology and sulfuric acid hydrolysis conditions (including acid concentration, temperature and time), and to realize morphological regulation of obtained NC.

View Article and Find Full Text PDF

Nitric oxide (NO), as a critical transcellular messenger, participates in a variety of physiological and pathological processes. However, its real-time detection still faces challenges due to its short half-life and trace amounts. Here, MWCNTs@COF-366-Co was prepared by growth of a cobalt porphyrin-based covalent organic framework (COF-366-Co) on multi-walled carbon nanotubes (MWCNTs), and a unique biosensing platform for ultrasensitive real-time NO determination was established.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores a new method using chitosan modified AGQD combined with HPWO to create a composite (CS@AGQD-HPW) for efficiently removing ciprofloxacin (CIP) through a two-step process: pre-adsorption and photocatalysis.
  • CS@AGQD-HPW achieved an impressive CIP removal rate of 72.1% through adsorption and 98.8% through photocatalysis, indicating its effectiveness in water treatment.
  • The research also highlights that this method not only cleans the water but reduces the toxicity of CIP, achieving about 52.1% total organic carbon removal, and proposes potential pathways for further degradation of contaminants.
View Article and Find Full Text PDF

2D TiCT MXene is an ideal material for fabricating supercapacitor electrodes due to its excellent physical-chemical properties. However, the inherent self-stacking, narrow interlayer spacing, and low general mechanical strength limit its application in flexible supercapacitors. Herein, facile structural engineering strategies by drying (vacuum drying, freeze drying, and spin drying) were proposed to fabricate 3D high-performance TiCT/sulfated cellulose nanofibril (SCNF) self-supporting film supercapacitor electrodes.

View Article and Find Full Text PDF

The hemorrhage in daily life was a great challenge for the life health. Before hospitalization and infection, stopping traumatic bleeding timely is an important measure to decrease the death threat. The high crystallinity and low porous structure of chitin (CH) make texture of sole CH sponge not soft enough, which limit its hemostatic properties.

View Article and Find Full Text PDF

To investigate the clinical value of multi-slice spiral computed tomography (CT) angiography (MSCTA) combined with MRI in the diagnosis of cerebral aneurysm. A total of 90 patients with cerebral aneurysms diagnosed by DSA were selected as the subjects of this study. Another 30 patients with cerebral infarction were selected as negative controls (NC).

View Article and Find Full Text PDF

Here we present a new method to treat cellulose with a sulfamic acid-urea-choline chloride (ternary deep eutectic solvent) system, which can realize both swelling and sulfation of cellulose. This can greatly reduce the energy consumption in the process of cellulose nanoization, and use it to successfully prepare food packaging films for eliminating odors. We hope that due its simplicity and resource-efficiency, this method will have a widespread influence on currently used (nano) cellulose modification protocols.

View Article and Find Full Text PDF