One of the extraordinary characteristics of the biological brain is the low energy expense it requires to implement a variety of biological functions and intelligence as compared to the modern artificial intelligence (AI). Spike-based energy-efficient temporal codes have long been suggested as a contributor for the brain to run on low energy expense. Despite this code having been largely reported in the sensory cortex, whether this code can be implemented in other brain areas to serve broader functions and how it evolves throughout learning have remained unaddressed.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
In the research of motion control using brain-machine interface (BMI), analysis is usually conducted on one ensemble of neurons whose activity serves as direct input to the BMI decoder (control units). The number of control units is diverse in different control modes. That is to say, the size of dimensions of neural signals used in motion control is diverse.
View Article and Find Full Text PDFSpermidine, a natural polyamine presented widely in mammalian cells, has been implicated to extend the lifespan of several model organisms by inducing autophagy. However, the effect of spermidine against neuronal damage has not yet been fully determined. In this study, neuronal cell injury was induced by treating PC12 cells and cortical neurons with 1 μM staurosporine (STS).
View Article and Find Full Text PDF