Publications by authors named "Guignabert C"

Article Synopsis
  • Major advances have been made in understanding the cellular and molecular mechanisms involved in various types of pulmonary hypertension, but survival rates are still low, highlighting the need for better healthcare interventions.
  • Recent discussions from the 7th World Symposium on Pulmonary Hypertension emphasize the importance of new findings in pathology and pathophysiology, questioning their relevance to different forms of the condition.
  • The exploration of omics and technological advancements aims to improve our understanding of pulmonary vascular remodelling and to enhance patient care, drug development, and research in this area.
View Article and Find Full Text PDF

Pulmonary hypertension (PH) continues to present significant challenges to the medical community, both in terms of diagnosis and treatment. The advent of the updated 2022 European Society of Cardiology (ESC) and European Respiratory Society (ERS) guidelines has introduced pivotal changes that reflect the rapidly advancing understanding of this complex disease. These changes include a revised definition of PH, updates to the classification system, and treatment algorithm.

View Article and Find Full Text PDF
Article Synopsis
  • Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are serious conditions requiring treatment to prevent progression and death; this study focuses on medication adherence (MA) and its impacts.
  • A systematic review analyzed 20 studies with over 22,000 patients, revealing MA levels varied widely, with factors like increased treatment frequency and co-payment linked to lower adherence rates.
  • High MA is associated with better clinical outcomes, fewer hospitalizations, and reduced healthcare costs, highlighting the need for educational efforts to improve adherence among patients.
View Article and Find Full Text PDF

Hepatopulmonary syndrome (HPS) is a severe complication of liver diseases characterized by abnormal dilation of pulmonary vessels, resulting in impaired oxygenation. Recent research highlights the pivotal role of liver-produced BMP-9 (bone morphogenetic protein-9) in maintaining pulmonary vascular integrity. This study aimed to investigate the involvement of BMP-9 in human and experimental HPS.

View Article and Find Full Text PDF

Aims: Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity.

View Article and Find Full Text PDF

Pulmonary arterial (PA) hypertension (PAH) is a severe cardiopulmonary disease that may be triggered by exposure to drugs such as dasatinib or facilitated by genetic predispositions. The incidence of dasatinib-associated PAH is estimated at 0.45%, suggesting individual predispositions.

View Article and Find Full Text PDF

Background: Bone morphogenetic proteins 9 and 10 (BMP9 and BMP10), encoded by and , respectively, play a pivotal role in pulmonary vascular regulation. variants have been reported in pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). However, the phenotype of and carriers remains largely unexplored.

View Article and Find Full Text PDF

Heterozygous activin receptor-like kinase 1 (ALK1) mutations are associated with two vascular diseases: hereditary hemorrhagic telangiectasia (HHT) and more rarely pulmonary arterial hypertension (PAH). Here, we aimed to understand the impact of ALK1 mutations on BMP9 and BMP10 transcriptomic responses in endothelial cells. Endothelial colony-forming cells (ECFCs) and microvascular endothelial cells (HMVECs) carrying loss of function ALK1 mutations were isolated from newborn HHT and adult PAH donors, respectively.

View Article and Find Full Text PDF

Background: Leptin receptor (ObR-b) is overexpressed in pulmonary artery smooth muscle cells (PA-SMCs) from patients with pulmonary arterial hypertension (PAH) and is implicated in both mechanisms that contribute to pulmonary vascular remodeling: hyperproliferation and inflammation. Our aim was to investigate the role of ubiquitin-specific peptidase 8 (USP8) in ObR-b overexpression in PAH.

Methods: We performed in situ and in vitro experiments in human lung specimens and isolated PA-SMCs combined with 2 different in vivo models in rodents and we generated a mouse with an inducible USP8 deletion specifically in smooth muscles.

View Article and Find Full Text PDF

Background: Uncontrolled T-cell activation plays a key role in systemic sclerosis (SSc). Arsenic trioxide (ATO) has immunological effects and has demonstrated potential in preclinical SSc models. In this study, we assessed the efficacy of ATO in Fra2 transgenic (Fra2) mice, which develop severe vascular remodeling of pulmonary arterioles and nonspecific interstitial pneumonia-like lung disease, closely resembling human SSc-associated pulmonary hypertension, therefore partially resembling to the SSc human disease.

View Article and Find Full Text PDF

Objective: Our goal was to study the tolerance and efficacy of two B cell depletion strategies, including one with CD19-targeted chimeric antigen receptor (CAR) T cells, in a preclinical model mimicking the severe lung damages observed in systemic sclerosis.

Methods: B cell depletion strategies were evaluated in the Fra-2 transgenic (Tg) mouse model. We considered a first group of 16 untreated mice, a second group of 15 mice receiving a single dose of anti-CD20 monoclonal antibody (mAb), and a third group of 8 mice receiving CD19-targeted CAR-T cells in combination with anti-CD20 monoclonal antibody.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a severe but treatable form of pre-capillary pulmonary hypertension caused by pulmonary vascular remodelling. As a result of basic science discoveries, randomised controlled trials, studies of real-world data, and the development of clinical practice guidelines, considerable progress has been made in the treatment options and outcomes for patients with PAH, underscoring the importance of seamless translation of information from bench to bedside and, ultimately, to patients. However, PAH still carries a high mortality rate, which emphasises the urgent need for transformative innovations in the field.

View Article and Find Full Text PDF

Background: Activins are novel therapeutic targets in pulmonary arterial hypertension (PAH). We therefore studied whether key members of the activin pathway could be used as PAH biomarkers.

Methods: Serum levels of activin A, activin B, α-subunit of inhibin A and B proteins, and the antagonists follistatin and follistatin-like 3 (FSTL3) were measured in controls and in patients with newly diagnosed idiopathic, heritable, or anorexigen-associated PAH (n=80) at baseline and 3 to 4 months after treatment initiation.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive lung scarring. IPF-related pulmonary vascular remodeling and pulmonary hypertension (PH) result in a particularly poor prognosis. To study the pathogenesis of vascular remodeling in fibrotic lungs and its contribution to progression of fibrosis.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) is associated with pulmonary vasoconstriction and endothelial dysfunction leading to impaired nitric oxide (NO) and prostacyclin (PGI) pathways. Metformin, the first line treatment for type 2 diabetes and AMP-activated protein kinase (AMPK) activator, has been recently highlighted as a potential PH treatment. AMPK activation has been reported to improve endothelial function by enhancing endothelial NO synthase (eNOS) activity and to have relaxant effects in blood vessels.

View Article and Find Full Text PDF

Inhibitors of soluble epoxide hydrolase (sEH), which catalyzes the hydrolysis of various natural epoxides to their corresponding diols, present an opportunity for developing oral drugs for a range of human cardiovascular and inflammatory diseases, including, among others, diabetes and neuropathic pain. However, some evidence suggests that their administration may precipitate the development of pulmonary hypertension (PH). We thus evaluated the impact of chronic oral administration of the sEH inhibitor TPPU (N-[1-(1-Oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl]-urea) on hemodynamics, pulmonary vascular reactivity, and remodeling, as well as on right ventricular (RV) dimension and function at baseline and in the Sugen (SU5416) + hypoxia (SuHx) rat model of severe PH.

View Article and Find Full Text PDF

The signaling pathway of the bone morphogenetic protein (BMP)-9 binding to the endothelial receptor BMP receptor type II (BMPR-II), activin receptor-like kinase-1 (ALK1) and the coreceptor endoglin is essential to maintain the pulmonary vascular integrity. Dysregulation of this pathway is implicated in numerous vascular diseases, such as pulmonary arterial hypertension (PAH), hereditary hemorrhagic telangiectasia (HHT) and hepatopulmonary syndrome (HPS). This article aims to provide a comprehensive review of the implication of the BMP-9/BMPR-II/ALK1/endoglin pathway in the pathophysiology of these diseases.

View Article and Find Full Text PDF

Objectives: To mine the serum proteome of patients with systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH) and to detect biomarkers that may assist in earlier and more effective diagnosis and treatment.

Methods: Patients with limited cutaneous SSc, no extensive interstitial lung disease and no PAH-specific therapy were included. They were classified as cases if they had PAH confirmed by right heart catheterisation (RHC) and serum collected on the same day as RHC; and as controls if they had no clinical evidence of PAH.

View Article and Find Full Text PDF

Introduction: Although the physiological role of the C-terminal hydrolase domain of the soluble epoxide hydrolase (sEH-H) is well investigated, the function of its N-terminal phosphatase activity (sEH-P) remains unknown.

Objectives: This study aimed to assess in vivo the physiological role of sEH-P.

Methods: CRISPR/Cas9 was used to generate a novel knock-in (KI) rat line lacking the sEH-P activity.

View Article and Find Full Text PDF

Background: Risk stratification and assessment of disease progression in patients with pulmonary arterial hypertension (PAH) are challenged by the lack of accurate disease-specific and prognostic biomarkers. To date, brain natriuretic peptide (BNP) and/or its N-terminal fragment (NT-proBNP) are the only markers for right ventricular dysfunction used in clinical practice, in association with echocardiographic and invasive haemodynamic variables to predict outcome in patients with PAH.

Methods: This study was designed to identify an easily measurable biomarker panel in the serum of 80 well-phenotyped PAH patients with idiopathic, heritable or drug-induced PAH at baseline and at first follow-up.

View Article and Find Full Text PDF
Article Synopsis
  • The mechanotransduction channel Piezo2 is found only in lung microvascular endothelial cells (MVECs) and plays a key role in regulating pulmonary vascular function and structure.
  • In patients and animal models with pulmonary arterial hypertension (PAH), Piezo2 expression is significantly reduced, which may impair the vasodilator capacity of the lungs and lead to vascular remodeling.
  • Functional studies indicate that reduced Piezo2 affects endothelial alignment and nitric oxide production, suggesting it could be a potential therapeutic target to slow down the progression of PAH.
View Article and Find Full Text PDF

Background: We studied the ability of the nonsteroidal MR (mineralocorticoid receptor) antagonist finerenone to attenuate vascular remodeling and pulmonary hypertension using two complementary preclinical models (the monocrotaline and sugen/hypoxia rat models) of severe pulmonary hypertension.

Methods: We first examined the distribution pattern of MR in the lungs of patients with pulmonary arterial hypertension (PAH) and in monocrotaline and sugen/hypoxia rat lungs. Subsequent studies were performed to explore the effect of MR inhibition on proliferation of pulmonary artery smooth muscle cells derived from patients with idiopathic PAH.

View Article and Find Full Text PDF

Activation of the kynurenine pathway (KP) has been reported in patients with pulmonary arterial hypertension (PAH) undergoing PAH therapy. We aimed to determine KP-metabolism in treatment-naïve PAH patients, investigate its prognostic values, evaluate the effect of PAH therapy on KP-metabolites and identify cytokines responsible for altered KP-metabolism. KP-metabolite levels were determined in plasma from PAH patients (median follow-up 42 months) and in rats with monocrotaline- and Sugen/hypoxia-induced PH.

View Article and Find Full Text PDF