Publications by authors named "Guifeng Lin"

Achieving ligand subtype selectivity within highly homologous subtypes of G-protein-coupled receptor (GPCR) is critical yet challenging for GPCR drug discovery, primarily due to the unclear mechanism underlying ligand subtype selectivity, which hampers the rational design of subtype-selective ligands. Herein, we disclose an unusual molecular mechanism of entropy-driven ligand recognition in cannabinoid (CB) receptor subtypes, revealed through atomic-level molecular dynamics simulations, cryoelectron microscopy structure, and mutagenesis experiments. This mechanism is attributed to the distinct conformational dynamics of the receptor's orthosteric pocket, leading to variations in ligand binding entropy and consequently, differential binding affinities, which culminate in specific ligand recognition.

View Article and Find Full Text PDF
Article Synopsis
  • The therapeutic benefits of cannabis, particularly its main component THC, are linked to its ability to activate cannabinoid receptors which can lead to pain relief but may also cause side effects and addiction.
  • Researchers are exploring new types of drugs called ago-BAMs that can selectively activate certain pathways in the cannabinoid receptor CB1, potentially reducing negative side effects.
  • Recent studies show that ago-BAMs provided effective pain relief in mice with fewer side effects and no risk of addiction, indicating they could be a promising nonopioid option for pain management.
View Article and Find Full Text PDF

N6-methyladenosine (mA) modification, installed by METTL3-METTL14 complex, is abundant and critical in eukaryotic mRNA. However, its role in oral mucosal immunity remains ambiguous. Periodontitis is a special but prevalent infectious disease characterized as hyperinflammation of oral mucosa and bone resorption.

View Article and Find Full Text PDF

The Hippo pathway is a key regulator of tissue growth, organ size, and tumorigenesis. Activating the Hippo pathway by gene editing or pharmaceutical intervention has been proven to be a new therapeutic strategy for treatment of the Hippo pathway-dependent cancers. To now, a number of compounds that directly target the downstream effector proteins of Hippo pathway, including YAP and TEADs, have been disclosed, but very few Hippo pathway activators are reported.

View Article and Find Full Text PDF

Pyroptosis is a proinflammatory type of regulated cell death and has been involved in many pathological processes. Inhibition of pyroptosis is thought to be a promising strategy for the treatment of related diseases. Here, we performed a phenotypic screening against NLRP3-dependent pyroptosis and obtained the novel compound N77 after structure optimization.

View Article and Find Full Text PDF

GPR34 is a rhodopsin-like class G protein-coupled receptor (GPCR) that is involved in the development and progression of several diseases. Despite its importance, effective targeting strategies are lacking. We herein report a series of (S)-3-(4-(benzyloxy)phenyl)-2-(2-phenoxyacetamido)propanoic acid derivatives as a new class of GPR34 antagonists.

View Article and Find Full Text PDF

GPR34 is a functional G-protein-coupled receptor of Lysophosphatidylserine (LysoPS), and has pathogenic roles in numerous diseases, yet remains poorly targeted. We herein report a cryo-electron microscopy (cryo-EM) structure of GPR34 bound with LysoPS (18:1) and G protein, revealing a unique ligand recognition mode with the negatively charged head group of LysoPS occupying a polar cavity formed by TM3, 6 and 7, and the hydrophobic tail of LysoPS residing in a lateral open hydrophobic groove formed by TM3-5. Virtual screening and subsequent structural optimization led to the identification of a highly potent and selective antagonist (YL-365).

View Article and Find Full Text PDF

Ataxia-telangiectasia mutated (ATM) is an atypical serine/threonine protein kinase which is implicated in the repair of DNA double-strand breaks. Numerous reports have shown that ATM inhibition is an attractive target for radiotherapy and chemotherapy sensitization. Herein we report a new series of ATM kinase inhibitors containing the 1[1,2,3]triazolo[4,5-]quinoline scaffold, which was obtained by virtual screening, structural optimization, and structure-activity relationship studies.

View Article and Find Full Text PDF

Selectively targeting the cannabinoid receptor CB2 is an attractive therapeutic strategy for the treatment of inflammatory pain without psychiatric side effects mediated by the cannabinoid receptor CB1. Herein, we report the discovery of 4-(1,2,4-oxadiazol-5-yl)azepan-2-one derivatives as a new class of CB2 agonists. Systematic structure-activity relationship investigations resulted in the identification of the most potent compound .

View Article and Find Full Text PDF

Purpose: Pyroptosis, a novel proinflammatory programmed cell death, has been implicated in some ocular diseases. Of special note is the noncanonical pyroptosis that has recently been recognized to play a critical role in microbial keratitis. We previously discovered a new potent small molecular pyroptosis inhibitor, J114.

View Article and Find Full Text PDF

The gonadotrophin-releasing hormone (GnRH) is a central regulator of the human reproductive system and exerts physiological effects by binding to GnRH1R. The GnRH-GnRH1R system is a promising therapeutic target for the maintenance of reproductive function. There are several GnRH1R agonists on the market, but like GnRH, they are all peptide compounds and are limited by their way of administration (subcutaneous or intramuscular injection).

View Article and Find Full Text PDF

Recent advances in CRISPR-Cas9 techniques, especially the discovery of base and prime editing, have significantly improved our ability to make precise changes in the genome. We hypothesized that modulating certain endogenous pathway cells could improve the action of those editing tools in mammalian cells. We established a reporter system in which a small fragment was integrated into the genome by prime editing (PE).

View Article and Find Full Text PDF

Given the promising clinical value of allosteric modulators of G protein-coupled-receptors (GPCRs), mechanistic understanding of how these modulators alter GPCR function is of significance. Here, we report the crystallographic and cryo-electron microscopy structures of the cannabinoid receptor CB1 bound to the positive allosteric modulator (PAM) ZCZ011. These structures show that ZCZ011 binds to an extrahelical site in the transmembrane 2 (TM2)-TM3-TM4 surface.

View Article and Find Full Text PDF

Emerging SARS-CoV-2 variants continue to cause waves of new infections globally. Developing effective antivirals against SARS-CoV-2 and its variants is an urgent task. The main protease (M) of SARS-CoV-2 is an attractive drug target because of its central role in viral replication and its conservation among variants.

View Article and Find Full Text PDF

Ataxia telangiectasia and Rad3-related (ATR) kinase is a key regulating protein within the DNA damage response (DDR), responsible for sensing replication stress (RS), and has been considered as a potential target for cancer therapy. Herein, we report the discovery of a series of 6,7-dihydro-5H-pyrrolo[3,4-d]-pyrimidine derivatives as a new class of ATR inhibitors. Among them, compound 5g exhibits an IC value of 0.

View Article and Find Full Text PDF

Ataxia telangiectasia mutated and Rad3-related (ATR) kinase is an important regulator of the DNA damage response (DDR), especially in response to replication stress (RS). Tumor cells with ataxia-telangiectasia mutated (ATM) kinase loss of function or DDR defects that promote replicative stress are often more reliant on ATR for survival, highlighting ATR as a good antitumor target under the principle of synthetic lethality. Herein we report the discovery of a potent and highly selective ATR inhibitor, SKLB-197, which was obtained through structural optimization and structure-activity relationship (SAR) studies towards a hit compound (Cpd-1).

View Article and Find Full Text PDF
Article Synopsis
  • The NLRP3 inflammasome is linked to diseases like multiple sclerosis, type 2 diabetes, and gout, and targeting it with inhibitors may offer new treatment options.
  • Researchers screened compounds for their ability to inhibit NLRP3-dependent pyroptosis, identifying a promising compound, J114, which showed significantly enhanced anti-pyroptotic activity in human cells compared to mouse cells.
  • J114 functions by interfering with the interaction between NLRP3 or AIM2 and the adaptor protein ASC, highlighting its potential as a unique inhibitor worth studying further for its effects on inflammasome regulation in humans and mice.
View Article and Find Full Text PDF

The Rho-associated protein kinases (ROCKs) are associated with the pathology of glaucoma and discovery of ROCK inhibitors has attracted much attention in recent years. Herein, we report a series of 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one derivatives as a new class of ROCK inhibitors. Structure-activity relationship studies led to the discovery of compound 12b, which showed potent activities against ROCK I and ROCK Ⅱ with IC values of 93 nM and 3 nM, respectively.

View Article and Find Full Text PDF

Inhibition of cdc2-like kinase1 (CLK1) could efficiently induce autophagy and it has been thought as a potential target for treatment of autophagy-related diseases. Herein we report the discovery of a series of 3,6-disubstutited-imidazo[1,2-a]pyridine derivatives as a new class of CLK1 inhibitors. Among them, compound 9e is the most potent one, which exhibits an IC value of 4 nM against CLK1 kinase.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continually poses serious threats to global public health. The main protease (M) of SARS-CoV-2 plays a central role in viral replication. We designed and synthesized 32 new bicycloproline-containing M inhibitors derived from either boceprevir or telaprevir, both of which are approved antivirals.

View Article and Find Full Text PDF

SET domain bifurcated protein 1 (SETDB1) is a histone lysine methyltransferase that promotes the silencing of some tumour suppressor genes and is overexpressed in many cancers. SETDB1 contains a unique tandem tudor domain (TTD) that recognizes histone H3 sequences containing both methylated and acetylated lysines. Beginning with the identification of a hit compound (Cpd1), we discovered the first potent and selective small molecule SETDB1-TTD inhibitor (R,R)-59 through stepwise structure-guided optimization.

View Article and Find Full Text PDF

SIRT6 activation is thought to be a promising target for the treatment of many diseases, particularly cancer. Herein, we report the discovery of a series of new small-molecule SIRT6 activators. Structure-activity relationship analyses led to the identification of the most potent compound, 2-(1-benzofuran-2-yl)--(diphenylmethyl) quinoline-4-carboxamide (), which showed an EC value of 0.

View Article and Find Full Text PDF

Inhibitors of the Hippo signaling pathway have been demonstrated to have a potential clinical application in cases such as tissue repair and organ regeneration. However, there is a lack of potent Hippo pathway inhibitors at present. Herein we report the discovery of a series of 1,8-disubstituted-[1,2,3]triazolo[4,5-c]quinoline derivatives as a new class of Hippo pathway inhibitors by utilizing a cell line-based screening model (A549-CTGF).

View Article and Find Full Text PDF

The human tyrosyl transfer-RNA (tRNA) synthetase (TyrRS), which is well known for its essential aminoacylation function in protein synthesis, has been shown to translocate to the nucleus and protect against DNA damage caused by external stimuli. Small molecules that can fit into the active site pocket of TyrRS are thought to affect the nuclear role. The exploitation of TyrRS inhibitors has attracted attention recently.

View Article and Find Full Text PDF