Publications by authors named "Guifen Xu"

Dopamine (DA), a key catecholamine, plays a pivotal role in the regulation of human cognition and emotions. It has profound effects on the hormonal, memory, and cardiovascular systems. Anomalies like Alzheimer's, Parkinson's, schizophrenia, and senile dementia are linked to abnormal DA levels.

View Article and Find Full Text PDF

Antibiotics are a new type of environmental pollutants. Due to its wide application in many fields, antibiotic residues are ubiquitous in the wastewater environments. Given their potential threat on water ecosystem functioning and public health, the detection of antibiotic residues in wastewater environments has become very necessary.

View Article and Find Full Text PDF

In the context of COVID-19 pandemic lockdowns, fitness influencers on social media are greatly involved in people's home fitness processes, but there is limited research examining the role of fitness influencers on social media in exercise intention. This study aimed to explore whether people's perceptions of the personal attributes and content quality of fitness influencers can promote a strong emotional connection between the two, thereby influencing people's exercise intentions. Based on the theory of the parasocial relationship, we investigated the influence of social attractiveness (SA), physical attractiveness (PA), task attractiveness (TA), and content quality (CQ) of fitness influencers on the parasocial relationships (PSRs) between viewers and fitness influencers on social media and whether PSRs positively contribute to viewers' exercise intentions (EI).

View Article and Find Full Text PDF

Based on the advantages of the good selectivity and high sensitivity of the synchronous fluorescence method, an efficient method using constant-wavelength synchronous fluorescence spectrometry (CWSFS) for simultaneous and rapid determination of four polycyclic aromatic hydrocarbons (PAHs) (acenaphthene, phenanthrene, benzo[a]anthracene and fluoranthene) in drinking water was established in this study. When the difference in wavelength (Δλ) at 100 nm was chosen for CWSFS scanning, the synchronous fluorescence spectra of the four PAHs could be well separated with only one single scan. Different from conventional fluorescence analysis, the established method can avoid the interference among the four PAHs each other and the interference of the drinking water sample matrix, so the four PAHs in drinking water could be well distinguished and determined.

View Article and Find Full Text PDF

Heart failure (HF) is the typical terminal stage of cardiac diseases involving inflammatory states. The function of microRNAs (miRNAs) in the progress of HF remains poorly understood. In this study, real-time PCR results showed a decreased expression of miRNA-181b (miR-181b) in HF patients compared with healthy individuals.

View Article and Find Full Text PDF

We aimed to identify potential clinical predictors associated with the risk of fulminant myocarditis, and further to establish and assess a nomogram model based on significant attributes for clinical practicability.This is a retrospective, cross-sectional study, involving 28 patients with fulminant myocarditis and 35 age-, and sex-matched patients with non-fulminant myocarditis. Effect-size estimates are expressed as odds ratio (OR) and 95% confidence interval (CI).

View Article and Find Full Text PDF

Seven benzophenone compounds were synthesized in one or two steps, then their antitumor activity was evaluated. The total yields ranged from 9% to 44%. Compounds exhibited obvious antitumor activity.

View Article and Find Full Text PDF

Solid tumors are often associated with high levels of extracellular ATP. Ectonucleotidases catalyze the sequential hydrolysis of ATP to adenosine, which potently suppresses T-cell and NK-cell functions via the adenosine receptors (A and A). The ectonucleotidase CD73 catalyzes the conversion of AMP to adenosine.

View Article and Find Full Text PDF
Article Synopsis
  • Five polyhydroxybenzophenones were synthesized and tested for their antitumor and antioxidant activities.
  • Two specific compounds showed significant antitumor effects, outperforming cisplatin against hepatocarcinoma SMMC-7721 cells with low IC values.
  • Additionally, three compounds exhibited stronger antioxidant properties than trolox, with their effectiveness confirmed through computational chemistry, indicating they are promising candidates for further research.
View Article and Find Full Text PDF

Extracellular adenosine (ADO), present in high concentrations in the tumor microenvironment (TME), suppresses immune function via inhibition of T cell and NK cell activation. Intratumoral generation of ADO depends on the sequential catabolism of ATP by two ecto-nucleotidases, CD39 (ATP → AMP) and CD73 (AMP → ADO). Inhibition of CD73 eliminates a major pathway of ADO production in the TME and can reverse ADO-mediated immune suppression.

View Article and Find Full Text PDF

Sixteen substituted 1-hydroxy-3-methylxanthones were synthesized in one step. The yields ranged from 33 to 76%. Then, the antitumor, antioxidant, anti-tyrosinase, anti-pancreatic lipase, and antifungal activities of compounds - were evaluated.

View Article and Find Full Text PDF

Ten substituted 1,3-dihydroxyxanthones were synthesized in one step. The yields ranged from 40 to 76%. Compounds 8-10 were first reported.

View Article and Find Full Text PDF

A high-throughput screen resulted in the discovery of benzoxazepine 1, an EP2 antagonist possessing low microsomal stability and potent CYP3A4 inhibition. Modular optimization of lead compound 1 resulted in the discovery of benzoxazepine 52, a molecule with single-digit nM binding affinity for the EP2 receptor and significantly improved microsomal stability. It was devoid of CYP inhibition and was ∼4000-fold selective against the other EP receptors.

View Article and Find Full Text PDF

1. AMG 232 is a novel inhibitor of the p53-MDM2 protein-protein interaction currently in Phase I clinical trials for multiple tumor indications. The objectives of the investigations reported in this article were to characterize the pharmacokinetic and drug metabolism properties of AMG 232 in pre-clinical species in vivo and in vitro, and in humans in vitro, and to predict its pharmacokinetics in humans through integrating PKDM data.

View Article and Find Full Text PDF

FLT3(ITD) subtype acute myeloid leukemia (AML) has a poor prognosis with currently available therapies. A number of small molecule inhibitors of FLT3 and/or CDK4/6 are currently under development. A more complete and quantitative understanding of the mechanisms of action of FLT3 and CDK4/6 inhibitors may better inform the development of current and future compounds that act on one or both of the molecular targets, and thus may lead to improved treatments for AML.

View Article and Find Full Text PDF

Sphingosine kinases (SPHKs) are enzymes that phosphorylate the lipid sphingosine, leading to the formation of sphingosine-1-phosphate (S1P). In addition to the well established role of extracellular S1P as a mitogen and potent chemoattractant, SPHK activity has been postulated to be an important intracellular regulator of apoptosis. According to the proposed rheostat theory, SPHK activity shifts the intracellular balance from the pro-apoptotic sphingolipids ceramide and sphingosine to the mitogenic S1P, thereby determining the susceptibility of a cell to apoptotic stress.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) signaling plays a vital role in mitogenesis, cell migration and angiogenesis. Sphingosine kinases (SphKs) catalyze a key step in sphingomyelin metabolism that leads to the production of S1P. There are two isoforms of SphK and observations made with SphK deficient mice show the two isoforms can compensate for each other's loss.

View Article and Find Full Text PDF

Background: Dried blood spot (DBS) sampling in combination with LC-MS/MS has been used increasingly in drug discovery for quantitative analysis to support pharmacokinetic (PK) studies. In this study, we assessed the effect of blood-to-plasma (B:P) partitioning on the bioanalytical performance and PK data acquired by DBS for a compound AMG-1 with species and concentration-dependent B:P ratio.

Results: B:P partitioning did not adversely affect bioanalytical performance of DBS for AMG-1.

View Article and Find Full Text PDF

Background: The use of dried blood spot (DBS) sampling technique is of particular interest for drug discovery pharmacokinetic studies due to the small blood volume requirement. In addition, automated blood sampling is an attractive approach for rat pharmacokinetic studies as animal handling work is minimized. The goal of this study was to use an automated DBS sampler for automated blood collection and spotting onto DBS paper for pharmacokinetic studies in rats.

View Article and Find Full Text PDF

A bis-amide antagonist of Smoothened, a seven-transmembrane receptor in the Hedgehog signaling pathway, was discovered via high throughput screening. In vitro and in vivo experiments demonstrated that the bis-amide was susceptible to N-acyl transferase mediated amide scission. Several bioisosteric replacements of the labile amide that maintained in vitro potency were identified and shown to be metabolically stable in vitro and in vivo.

View Article and Find Full Text PDF

Fatty acid amide hydrolase (FAAH), an amidase-signature family member, is an integral membrane enzyme that degrades lipid amides including the endogenous cannabinoid anandamide and the sleep-inducing molecule oleamide. Both genetic knock out and pharmacological administration of FAAH inhibitors in rodent models result in analgesic, anxiolytic, and antiinflammatory phenotypes. Targeting FAAH activity, therefore, presents a promising new therapeutic strategy for the treatment of pain and other neurological-related or inflammatory disorders.

View Article and Find Full Text PDF

Starting from a series of ureas that were determined to be mechanism-based inhibitors of FAAH, several spirocyclic ureas and lactams were designed and synthesized. These efforts identified a series of novel, noncovalent FAAH inhibitors with in vitro potency comparable to known covalent FAAH inhibitors. The mechanism of action for these compounds was determined through a combination of SAR and co-crystallography with rat FAAH.

View Article and Find Full Text PDF

Pyridopyridazine antagonists of the hedgehog signaling pathway are described. Designed to optimize our previously described phthalazine smoothened antagonists, a representative compound eliminates a PXR liability while retaining potency and in vitro metabolic stability. Moreover, the compound has improved efficacy in a hedgehog/smoothened signaling mouse pharmacodynamic model.

View Article and Find Full Text PDF

The Hedgehog (Hh) signaling pathway regulates cell proliferation and differentiation in developing tissues, and abnormal activation of the Hh pathway has been linked to several tumor subsets. As a transducer of Hh signaling, the GPCR-like protein Smoothened (Smo) is a promising target for disruption of unregulated Hh signaling. A series of 1-amino-4-arylphthalazines was developed as potent and orally bioavailable inhibitors of Smo.

View Article and Find Full Text PDF

Collision induced dissociation (CID) has been extensively used for structure elucidation. CID in the electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) modes has been found to generate mostly even-electron fragment ions while it has been occasionally reported to form odd-electron free radical ions. However, the structural requirements and the fragmentation mechanisms for free-radical CIDs have not been well characterized in the literature.

View Article and Find Full Text PDF