Introduction: Humans with gain-of-function (GOF) mutations in STAT1 (Signal Transducer and Activator of Transcription 1), a potent immune regulator, experience frequent infections. About one-third, especially those with DNA-binding domain (DBD) mutations such as T385M, also develop autoimmunity, sometimes accompanied by increases in T-helper 1 (Th1) and T-follicular helper (Tfh) CD4 effector T cells, resembling those that differentiate following infection-induced STAT1 signaling. However, environmental and molecular mechanisms contributing to autoimmunity in STAT1 GOF patients are not defined.
View Article and Find Full Text PDFHow the genetic landscape governs a tumor's response to immunotherapy remains poorly understood. To assess the immune-modulatory capabilities of 573 genes associated with altered cytotoxicity in human cancers, here we perform CRISPR/Cas9 screens directly in mouse lung cancer models. We recover the known immune evasion factors Stat1 and Serpinb9 and identify the cancer testis antigen Adam2 as an immune modulator, whose expression is induced by Kras and further elevated by immunotherapy.
View Article and Find Full Text PDFMutations in , and are recurrently observed in myeloid neoplasms. and encode isocitrate dehydrogenase isoforms, which normally catalyze the conversion of isocitrate to α-ketoglutarate (α-KG). Oncogenic mutations confer neomorphic activity, leading to the production of D-2-hydroxyglutarate (D-2-HG), a potent inhibitor of α-KG-dependent enzymes which include the TET methylcytosine dioxygenases.
View Article and Find Full Text PDFType I interferons (IFN-Is) are central regulators of anti-tumor immunity and responses to immunotherapy, but they also drive the feedback inhibition underlying therapeutic resistance. In the present study, we developed a mass cytometry approach to quantify IFN-I-stimulated protein expression across immune cells and used multi-omics to uncover pre-therapy cellular states encoding responsiveness to inflammation. Analyzing peripheral blood cells from multiple cancer types revealed that differential responsiveness to IFN-Is before anti-programmed cell death protein 1 (PD1) treatment was highly predictive of long-term survival after therapy.
View Article and Find Full Text PDFAcute lymphoblastic leukemia (ALL) dissemination to the central nervous system (CNS) is a challenging clinical problem whose underlying mechanisms are poorly understood. Here, we show that primary human ALL samples injected into the femora of immunodeficient mice migrate to the skull and vertebral bone marrow and provoke bone lesions that enable passage into the subarachnoid space. Treatment of leukemia xenografted mice with a biologic antagonist of receptor activator of nuclear factor κB ligand (RANKL) blocks this entry route.
View Article and Find Full Text PDFCentral nervous system (CNS) dissemination of B-precursor acute lymphoblastic leukemia (B-ALL) has poor prognosis and remains a therapeutic challenge. Here we performed targeted DNA sequencing as well as transcriptional and proteomic profiling of paired leukemia-infiltrating cells in the bone marrow (BM) and CNS of xenografts. Genes governing mRNA translation were upregulated in CNS leukemia, and subclonal genetic profiling confirmed this in both BM-concordant and BM-discordant CNS mutational populations.
View Article and Find Full Text PDFIn acute myeloid leukemia (AML), molecular heterogeneity across patients constitutes a major challenge for prognosis and therapy. AML with NPM1 mutation is a distinct genetic entity in the revised World Health Organization classification. However, differing patterns of co-mutation and response to therapy within this group necessitate further stratification.
View Article and Find Full Text PDFChronic viral infections increase severity of Mycobacterium tuberculosis (Mtb) coinfection. Here, we examined how chronic viral infections alter the pulmonary microenvironment to foster coinfection and worsen disease severity. We developed a coordinated system of chronic virus and Mtb infection that induced central clinical manifestations of coinfection, including increased Mtb burden, extra-pulmonary dissemination, and heightened mortality.
View Article and Find Full Text PDFAlthough most children survive B cell acute lymphoblastic leukemia (B-ALL), they frequently experience long-term, treatment-related health problems, including osteopenia and osteonecrosis. Because some children present with fractures at ALL diagnosis, we considered the possibility that leukemic B cells contribute directly to bone pathology. To identify potential mechanisms of B-ALL-driven bone destruction, we examined the ; ; triple mutant (TM) mice and ; double mutant (DM) mouse models of spontaneous B-ALL.
View Article and Find Full Text PDFmutations are a major cause of hypermutant cancers, yet questions remain regarding mechanisms of tumorigenesis, genotype-phenotype correlation, and therapeutic considerations. In this study, we establish mouse models harboring cancer-associated mutations P286R and S459F, which cause rapid albeit distinct time to cancer initiation , independent of their exonuclease activity. Mouse and human correlates enabled novel stratification of mutations into three groups based on clinical phenotype and mutagenicity.
View Article and Find Full Text PDFMany pathogens subvert intestinal immunity to persist within the gastrointestinal tract (GIT); yet, the underlying mechanisms that enable sanctuary specifically in this reservoir are unclear. Using mass cytometry and network analysis, we demonstrate that chronic LCMV infection of the GIT leads to dysregulated microbial composition, a cascade of metabolic alterations, increased susceptibility to GI disease, and a system-wide recalibration of immune composition that defines viral persistence. Chronic infection led to outgrowth of activated Tbet-expressing T reg cell populations unique to the GIT and the rapid erosion of pathogen-specific CD8 tissue-resident memory T cells.
View Article and Find Full Text PDFDisease recurrence causes significant mortality in B-progenitor acute lymphoblastic leukemia (B-ALL). Genomic analysis of matched diagnosis and relapse samples shows relapse often arising from minor diagnosis subclones. However, why therapy eradicates some subclones while others survive and progress to relapse remains obscure.
View Article and Find Full Text PDFFlow cytometry is a widely applied approach for exploratory immune profiling and biomarker discovery in cancer and other diseases. However, flow cytometry is limited by the number of parameters that can be simultaneously analyzed, severely restricting its utility. Recently, the advent of mass cytometry (CyTOF) has enabled high dimensional and unbiased examination of the immune system, allowing simultaneous interrogation of a large number of parameters.
View Article and Find Full Text PDFMethods Mol Biol
March 2020
Mass cytometers are time-of-flight (TOF) mass spectrometer-coupled flow cytometers (known as CyTOFs) that quantify the abundance of metal-tagged antibodies (Abs) or other cellular probes within single cell suspensions or laser-ablated tissue sections. While many strategies exist for covalently crosslinking to proteins, the Fluidigm MaxPar process is currently the most widely used and involves first loading a metal-chelating polymer with an elementally and isotopically enriched metal. Once the chelation sites have been filled, a maleimide moiety on the polymer is reacted with the free thiol groups on the partially reduced monoclonal immunoglobulin G (IgG) Ab to form an irreversible covalent bond.
View Article and Find Full Text PDFCDH1 and PIK3CA are the two most frequently mutated genes in invasive lobular carcinoma (ILC) of the breast. Transcription profiling has identified molecular subtypes for ILC, one of which, immune-related (IR), is associated with gene expression linked to lymphocyte and macrophage infiltration. Here, we report that deletion of Cdh1, together with activation of Pik3ca in mammary epithelium of genetically modified mice, leads to formation of IR-ILC-like tumors with immune cell infiltration, as well as gene expression linked to T-regulatory (Treg) cell signaling and activation of targetable immune checkpoint pathways.
View Article and Find Full Text PDFCD8 T cell exhaustion impedes control of chronic viral infection; yet how new T cell responses are mounted during chronic infection is unclear. Unlike T cells primed at the onset of infection that rapidly differentiate into effectors and exhaust, we demonstrate that virus-specific CD8 T cells primed after establishment of chronic LCMV infection preferentially generate memory-like transcription factor TCF1 cells that were transcriptionally and proteomically distinct, less exhausted, and more responsive to immunotherapy. Mechanistically, adaptations of antigen-presenting cells and diminished T cell signaling intensity promoted differentiation of the memory-like subset at the expense of rapid effector cell differentiation, which was now highly dependent on IL-21-mediated CD4 T cell help for its functional generation.
View Article and Find Full Text PDFRegulatory T (Treg) cells expressing the transcription factor FOXP3 are essential for the maintenance of immunologic self-tolerance but play a detrimental role in most cancers due to their ability to suppress antitumor immunity. The phenotype of human circulating Treg cells has been extensively studied, but less is known about tumor-infiltrating Treg cells. We studied the phenotype and function of tumor-infiltrating Treg cells in ovarian cancer and melanoma to identify potential Treg cell-associated molecules that can be targeted by tumor immunotherapies.
View Article and Find Full Text PDFRhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and outcomes have stagnated, highlighting a need for novel therapies. Genomic analysis of RMS has revealed that alterations in the receptor tyrosine kinase (RTK)/RAS/PI3K axis are common and that FGFR4 is frequently mutated or overexpressed. Although FGFR4 is a potentially druggable receptor tyrosine kinase, its functions in RMS are undefined.
View Article and Find Full Text PDFInterleukin-7 receptor (IL-7R) signaling is critical for multiple stages of T-cell development, but a role in the establishment of the mature thymic architecture needed for T-cell development and thymocyte selection has not been established. Crosstalk signals between developing thymocytes and thymic epithelial cell (TEC) precursors are critical for their differentiation into cortical TECs (cTECs) and medullary TECs (mTECs). In addition, mTEC-derived factors have been implicated in the recruitment of thymic dendritic cells (DCs) and intrathymic DC development.
View Article and Find Full Text PDFIn this study, we analyzed RNA-sequencing data of 14 samples characterized by biallelic CEBPA (CEBPA(bi)) mutations included in the Leucegene collection of 415 primary acute myeloid leukemia (AML) specimens, and describe for the first time high frequency recurrent mutations in the granulocyte colony-stimulating factor receptor gene CSF3R, which signals through JAK-STAT proteins. Chemical interrogation of these primary human specimens revealed a uniform and specific sensitivity to all JAK inhibitors tested irrespective of their CSF3R mutation status, indicating a general sensitization of JAK-STAT signaling in this leukemia subset. Altogether, these results identified the co-occurrence of mutations in CSF3R and CEBPA in a well-defined AML subset, which uniformly responds to JAK inhibitors and paves the way to personalized clinical trials for this disease.
View Article and Find Full Text PDFMany promising new cancer drugs proceed through preclinical testing and early-phase trials only to fail in late-stage clinical testing. Thus, improved models that better predict survival outcomes and enable the development of biomarkers are needed to identify patients most likely to respond to and benefit from therapy. Here, we describe a comprehensive approach in which we incorporated biobanking, xenografting, and multiplexed phospho-flow (PF) cytometric profiling to study drug response and identify predictive biomarkers in acute myeloid leukemia (AML) patients.
View Article and Find Full Text PDFAcquisition of the arterial and haemogenic endothelium fates concurrently occur in the aorta-gonad-mesonephros (AGM) region prior to haematopoietic stem cell (HSC) generation. The arterial programme depends on Dll4 and the haemogenic endothelium/HSC on Jag1-mediated Notch1 signalling. How Notch1 distinguishes and executes these different programmes in response to particular ligands is poorly understood.
View Article and Find Full Text PDFGenetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis.
View Article and Find Full Text PDF