Publications by authors named "Guido Reina"

We developed a new approach comprised of different visualizations for the comparative spatio-temporal analysis of displacement processes in porous media. We aim to analyze and compare ensemble datasets from experiments to gain insight into the influence of different parameters on fluid flow. To capture the displacement of a defending fluid by an invading fluid, we first condense an input image series to a single time map.

View Article and Find Full Text PDF

Reproducibility is a cornerstone of good scientific practice; however, the ongoing "reproducibility crisis" shows that we still need to improve the way we are doing research currently. Reproducibility is crucial because it enables both the comparison to existing techniques as well as the composition and improvement of existing approaches. It can also increase trust in the respective results, which is paramount for adoption in further research and applications.

View Article and Find Full Text PDF

Modern machines continuously log status reports over long periods of time, which are valuable data to optimize working routines. Data visualization is a commonly used tool to gain insights into these data, mostly in retrospective (e.g.

View Article and Find Full Text PDF

Our built world is one of the most important factors for a livable future, accounting for massive impact on resource and energy use, as well as climate change, but also the social and economic aspects that come with population growth. The architecture, engineering, and construction industry is facing the challenge that it needs to substantially increase its productivity, let alone the quality of buildings of the future. In this article, we discuss these challenges in more detail, focusing on how digitization can facilitate this transformation of the industry, and link them to opportunities for visualization and augmented reality research.

View Article and Find Full Text PDF

Achieving high rendering quality in the visualization of large particle data, for example from large-scale molecular dynamics simulations, requires a significant amount of sub-pixel super-sampling, due to very high numbers of particles per pixel. Although it is impossible to super-sample all particles of large-scale data at interactive rates, efficient occlusion culling can decouple the overall data size from a high effective sampling rate of visible particles. However, while the latter is essential for domain scientists to be able to see important data features, performing occlusion culling by sampling or sorting the data is usually slow or error-prone due to visibility estimates of insufficient quality.

View Article and Find Full Text PDF

Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively.

View Article and Find Full Text PDF

Collaborative exploration of scientific data sets across large high-resolution displays requires both high visual detail as well as low-latency transfer of image data (oftentimes inducing the need to trade one for the other). In this work, we present a system that dynamically adapts the encoding quality in such systems in a way that reduces the required bandwidth without impacting the details perceived by one or more observers. Humans perceive sharp, colourful details, in the small foveal region around the centre of the field of view, while information in the periphery is perceived blurred and colourless.

View Article and Find Full Text PDF

Simulations of cosmic evolution are a means to explain the formation of the universe as we see it today. The resulting data of such simulations comprise numerous physical quantities, which turns their analysis into a complex task. Here, we analyze such high-dimensional and time-varying particle data using various visualization techniques from the fields of particle visualization, flow visualization, volume visualization, and information visualization.

View Article and Find Full Text PDF

Immersive technologies like stereo rendering, virtual reality, or augmented reality (AR) are often used in the field of molecular visualisation. Modern, comparably lightweight and affordable AR headsets like Microsoft's HoloLens open up new possibilities for immersive analytics in molecular visualisation. A crucial factor for a comprehensive analysis of molecular data in AR is the rendering speed.

View Article and Find Full Text PDF

This article discusses our experience in creating MegaMol, an open-source visualization framework for large particle-based data.

View Article and Find Full Text PDF

Two-dimensional height fields are the most common data structure used for storing and rendering of terrain in offline rendering and especially real-time computer graphics. By its very nature, a height field cannot store terrain structures with multiple vertical layers such as overhanging cliffs, caves, or arches. This restriction does not apply to volumetric data structures.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations are crucial to investigating important processes in physics and thermodynamics. The simulated atoms are usually visualized as hard spheres with Phong shading, where individual particles and their local density can be perceived well in close-up views. However, for large-scale simulations with 10 million particles or more, the visualization of large fields-of-view usually suffers from strong aliasing artifacts, because the mismatch between data size and output resolution leads to severe under-sampling of the geometry.

View Article and Find Full Text PDF

We present Molecular Surface Maps, a novel, view-independent, and concise representation for molecular surfaces. It transfers the well-known world map metaphor to molecular visualization. Our application maps the complex molecular surface to a simple 2D representation through a spherical intermediate, the Molecular Surface Globe.

View Article and Find Full Text PDF

Visualization applications nowadays not only face increasingly larger datasets, but have to solve increasingly complex research questions. They often require more than a single algorithm and consequently a software solution will exceed the possibilities of simple research prototypes. Well-established systems intended for such complex visual analysis purposes have usually been designed for classical, mesh-based graphics approaches.

View Article and Find Full Text PDF

Conducting a current through a nanopore allows for the analysis of molecules inside the pore because a current modulation caused by the electrostatic properties of the passing molecules can be measured. This mechanism shows great potential for DNA sequencing, as the four different nucleotide bases induce different current modulations. We present a visualisation approach to investigate this phenomenon in our simulations of DNA within a nanopore by combining state-of-the-art molecular visualisation with vector field illustration.

View Article and Find Full Text PDF

University of Stuttgart educators have updated three computer science courses to incorporate forward-compatible OpenGL. To help students, they developed an educational framework that abstracts some of modern OpenGL's difficult aspects.

View Article and Find Full Text PDF

The University of Stuttgart's software engineering major complements the traditional computer science major with more practice-oriented education. Two-semester software projects in various application areas offered by the university's different computer science institutes are a successful building block in the curriculum. With this realistic, complex project setting, students experience the practice of software engineering, including software development processes, technologies, and soft skills.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulation is applied to the condensation process of supersaturated vapors of methane, ethane, and carbon dioxide. Simulations of systems with up to a 10(6) particles were conducted with a massively parallel MD program. This leads to reliable statistics and makes nucleation rates down to the order of 10(30) m(-3) s(-1) accessible to the direct simulation approach.

View Article and Find Full Text PDF

A current research topic in molecular thermodynamics is the condensation of vapor to liquid and the investigation of this process at the molecular level. Condensation is found in many physical phenomena, e.g.

View Article and Find Full Text PDF