Publications by authors named "Guido Orlandini"

In this work, the ability of several bis-viologen axles to thread a series of heteroditopic tris(N-phenylureido)calix[6]arene wheels to give interwoven supramolecular complexes to the [3]pseudorotaxane type was studied. The unidirectionality of the threading process inside these nonsymmetric wheels allows the formation of highly preorganised [3]pseudorotaxane and [3]rotaxane species in which the macrocycles phenylureido moieties, functionalised with either ester, carboxylic, or hydroxymethyl groups, are facing each other. As verified by NMR and semiempirical computational studies, these latter compounds possess the correct spatial arrangement of their subcomponents, which could lead, in principle, upon proper bridging reaction, to the realisation of upper-to-upper molecular capsules that are based on calix[6]arene derivatives.

View Article and Find Full Text PDF

A substrate can modify its chemical features, including a change of its reactivity, as a consequence of non-covalent interactions upon inclusion within a molecular host. Since the rise of supramolecular chemistry, this phenomenon has stimulated the ingenuity of scientists to emulate the function of enzymes by designing supramolecular systems in which the energetics and selectivity of reactions can be manipulated through programmed host-guest interactions and/or steric confinement. In this paper we investigate how the engulfment of a positively charged pyridinium-based guest inside the π-rich cavity of a tris-(N-phenylureido)calix[6]arene host affects its reactivity towards a S2 reaction.

View Article and Find Full Text PDF

We describe the active template effect of a calix[6]arene host towards the alkylation of a complexed pyridylpyridinium guest. The acceleration of the reaction within the cavity is significant and rim-selective, enabling the efficient preparation of rotaxanes with full control of the mutual orientation of their nonsymmetric components.

View Article and Find Full Text PDF

Tris-(-phenylureido)-calix[6]arene derivatives are heteroditopic non-symmetric molecular hosts that can form pseudorotaxane complexes with 4,4'-bipyridinium-type guests. Owing to the unique structural features and recognition properties of the calix[6]arene wheel, these systems are of interest for the design and synthesis of novel molecular devices and machines. We envisaged that the incorporation of photoactive units in the calixarene skeleton could lead to the development of systems the working modes of which can be governed and monitored by means of light-activated processes.

View Article and Find Full Text PDF

Iodinated radiocontrast media (RCM) are usually well tolerated, but their large and increasing use renders their toxicity a relevant problem, especially in high risk patients. The aim of the study was to investigate the possible toxic or activating effects of iodixanol on endothelial cells (EC) and the putative in vitro protective action of N-acetylcysteine and rosuvastatin. Morphology, oxidative status, redistribution of heat-shock protein 60 and secretion of proinflammatory products were studied in cultured human EC through confocal microscopy, immunofluorescence and immuno-enzymatic methods.

View Article and Find Full Text PDF

In this report we focused our interest on the early events of the replication cycle of NWS/33 human influenza A (NWS) virus in MDCK (canine), LLC-MK2 (simian), and NSK (swine) kidney cells, with different susceptibility upon infection. We have previously demonstrated that actin organization induces restriction to viral replication during the early stages of NWS virus infection in simian kidney cells. To explore how cell endocytic mechanisms are hijacked by NWS virus and may modulate the outcome of viral infection, the effect of drugs affecting selectively the entry via clathrin-coated pits, caveolar/raft-dependent endocytosis and macropinocytosis was analyzed.

View Article and Find Full Text PDF

The nucleolus is a nuclear domain involved in the biogenesis of ribosomes, as well as in many other important cellular regulatory activities, such as cell cycle control and mRNA processing. Many viruses, including herpesviruses, are known to exploit the nucleolar compartment during their replication cycle. In a previous study, we demonstrated the preferential targeting and accumulation of the human cytomegalovirus (HCMV) UL83 phosphoprotein (pp65) to the nucleolar compartment and, in particular, to the nucleolar matrix of lytically infected fibroblasts; such targeting was already evident at very early times after infection.

View Article and Find Full Text PDF

Background: Type IV collagen is a major structural component of the normal kidney glomerulus. However, its role in chronic acquired glomerulopathies has been only partially elucidated.

Methods: Urinary levels of col(IV)alpha1, col(IV)alpha3 and col(IV)alpha5 collagen chains were analyzed in 107 patients with chronic acquired glomerulopathies.

View Article and Find Full Text PDF

The levels of Ras proteins in human primary fibroblasts are regulated by PDGF (platelet-derived growth factor). PDGF induced post-transcriptionally Ha-Ras by stimulating reactive oxygen species (ROS) and ERK1/2. Activation of ERK1/2 and high ROS levels stabilize Ha-Ras protein, by inhibiting proteasomal degradation.

View Article and Find Full Text PDF

The resistance to L-asparaginase (ASNase) has been associated to the overexpression of asparagine synthetase (AS), although the role played by other metabolic adaptations has not been yet defined. Both in ASNase-sensitive Jensen rat sarcoma cells and in ARJ cells, their ASNase-resistant counterparts endowed with a five-fold increased AS activity, ASNase treatment rapidly depletes intracellular asparagine. Under these conditions, cell glutamine is also severely reduced and the activity of glutamine synthetase (GS) is very low.

View Article and Find Full Text PDF

Very little is known about oocyte nuclear architecture during folliculogenesis. Using antibodies to reveal centromeres, Hoechst-staining to detect the AT-rich pericentromeric heterochromatin (chromocenters), combined with confocal microscopy for the three-dimensional analysis of the nucleus, we demonstrate that during mouse folliculogenesis the oocyte nuclear architecture undergoes dynamic changes. In oocytes isolated from primordial and primary follicles, centromeres and chromocenters were preferentially located at the periphery of the nucleus.

View Article and Find Full Text PDF

Calcein-acetoxymethylester (calcein-AM) is a non-fluorescent, cell permeant compound, which is converted by intracellular esterases into calcein, an anionic fluorescent form. It is used in microscopy and fluorometry and provides both morphological and functional information of viable cells. In this study we have tested the response of calcein-AM to oxidation.

View Article and Find Full Text PDF

Low doses, chronic exposure to mercurial organic compounds is a worldwide health concern and could be pathogenetically relevant as co-factor in several neurodegenerative diseases. In this in vitro study we wanted to further improve our knowledge on the mechanisms of toxicity of methylmercury hydroxide (MeHgOH) in the unprimed PC12 cell line. Cell viability, mitochondrial function, redox state, and cell morphology were recorded at different time points to sequence the events leading to cell death.

View Article and Find Full Text PDF

Mouse oocytes at the germinal vesicle stage are characterized by one of two nuclear morphologies: surrounded nucleolus (SN), in which the nucleolus is surrounded by a rim of Hoechst positive chromatin and not surrounded nucleolus (NSN), in which this rim is essentially absent. This morphological difference has a biological relevance as NSN oocytes are transcriptionally active, yet incapable of development beyond the two-cell stage. Whereas SN oocytes, which are transcriptionally inactive, are capable of development to the blastocyst stage.

View Article and Find Full Text PDF

Objective: To evaluate the apoptotic effect of the chemokine growth-related oncogene alpha (GROalpha), which we recently reported to be up-regulated in osteoarthritis (OA) chondrocytes. Chondrocyte apoptosis is considered to be a major determinant of cartilage damage in OA, a disease resulting from the aberrant production of inflammatory mediators (cytokines and chemokines) and effectors (matrix metalloproteinases and reactive oxygen and nitrogen species) by chondrocytes.

Methods: We investigated the apoptotic effect of GROalpha on isolated human cells and on in vitro-cultured cartilage explants by conventional methods (morphology, detection of DNA fragmentation in situ and in solution, exposure of phosphatidylserine) and by analysis of "early" biochemical events (plasma membrane depolarization, activation of caspase 3, and phosphorylation of c-Jun N-terminal kinase/stress-activated protein kinase).

View Article and Find Full Text PDF

Organic mercury is a well-known neurotoxicant although its mechanism of action has not been fully clarified. In addition to a direct effect on neurons, much experimental evidence supports an involvement of the glial component. We assessed methylmercury hydroxide (MeHgOH) toxicity in a glial model, C6 glioma cells, exposed in the 10(-5)-10(-8) M range.

View Article and Find Full Text PDF

Objective: Fibroblast activation is a crucial event in the development of systemic sclerosis (SSc). Antifibroblast autoantibodies (AFAs), detectable in the sera of SSc patients, are able to induce a proinflammatory phenotype on cultured fibroblasts. This study was undertaken to investigate the mechanisms of the interaction between AFAs and living fibroblasts.

View Article and Find Full Text PDF