In this study, a "time domain" system based on a partial coherence interferometry method is presented. The classic technique of varying the reference arm using a linear motor is replaced by the use of a rotating glass cube. The theoretical definition of the variation of the optical path length and first measurements in a human model eye and a real human eye are presented.
View Article and Find Full Text PDFIn this article, a swept-source setup based on a semiconductor optical amplifier at the central wavelength of 1050 nm for measurements of the axial length inside the eye is presented. The large coherence length is achieved using a tunable optical filter, consisting of a reflective diffraction grating, two Littrow prisms, and a scanner. It was possible to achieve a coherence length of 40 mm, which allowed interference measurements in this range to be made.
View Article and Find Full Text PDF