The pyrazole-based diamide ligand N,N'-bis(2-pyridylmethyl)pyrazole-3,5-dicarboxamide (H(3)L) has been structurally characterised and successfully employed in the preparation of [2 x 2] grid-type complexes. Thus, the reaction of H(3)L with Cu(ClO(4))2.6H(2)O or Ni(ClO(4))2.
View Article and Find Full Text PDFBy using the compartmental dinucleating pyrazolate ligand HL, dinickel(II) complexes [LNi2(micro-N3)(acetone)2]X2 (1: X = CIO4; 2: X = BPh4) and tetranickel(II) complex [{LNi2(micro-N3)(MeOH)2](CI04)4 (3) have been prepared and structurally characterized. Complexes 1 and 2 differ in the torsion along the bridging micro-1,3-azide moiety, while the azido ligands in 3 adopt an unusual micro-1,1,3 bridging mode to connect the two subunits. All three complexes show overall antiferromagnetic coupling and an S = 0 ground state, but the torsion along the azide moiety is a determining factor for the coupling strength.
View Article and Find Full Text PDFHighly preorganized pyrazolate-based dinickel(II) systems are shown to constitute suitable building blocks for the targeted assembly of azido-bridged Ni4 complexes with rectangular arrangement of the metal ions. A set of such complexes has been prepared and structurally characterized. mu-1,1-Azide binding within the bimetallic sub-units is controlled by the chosen topology of the pyrazolate ligand scaffold and gives rise to the anticipated ferromagnetic intradimer coupling.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2005
Using a set of pyrazolate-based dinucleating ligands with thioether sidearms and a set of different carboxylates, seven tetranuclear nickel(II) complexes of types [L2Ni4(N3)3(O2CR)2](ClO4) (1) and [L2Ni4(N3)(O2CR)4](ClO4) (2) featuring an unprecedented central mu4-1,1,3,3-azide could be isolated and fully characterized. X-ray crystal structures are discussed for 1a,b,e and 2b. The mu4-1,1,3,3-azide is symmetric in all cases except 1a but exhibits distinct binding modes with significantly different Ni-N(azide)-Ni angles and Ni-NNN-Ni torsions in type 1 and 2 complexes, which indicates high structural flexibility of this novel bridging unit.
View Article and Find Full Text PDFPyrazolate-based dinucleating ligands with thioether-containing chelate arms have been used for the synthesis of a family of novel tetranuclear nickel(II) complexes [L2Ni4(N3)3(O2CR)](ClO4)2 that incorporate three azido bridges and one carboxylate (R = Me, Ph). Molecular structures have been elucidated by X-ray crystallography in four cases, revealing Ni4 cores with a unique topology in which two of the azido ligands adopt an unusual mu3-1,1,3 bridging mode. The compounds were further characterized by mass spectrometry, IR spectroscopy, and variable-temperature magnetic susceptibility measurements.
View Article and Find Full Text PDFTwo new trinuclear complexes 1 and 2 that are composed of the three-directional ligand 2,4,6-tris(di-2-pyridylamino)-1,3,5-triazine (dipyatriz) and copper(II) chloride as well as a 1D polymeric zigzag system 3 assembled from trimetallic type 2 building blocks have been prepared and structurally characterized. While the triazine-N are not involved in metal coordination, each ligand bidentately binds to three copper ions via its three pairs of pyridine-N donors, and five-coordination of the copper is completed by chloride or dmso solvent molecules. Variable-temperature magnetic studies reveal weak antiferromagnetic coupling.
View Article and Find Full Text PDFThe first successful attempt to construct 3D supramolecular frameworks with high-nuclear 3d-4f heterometallic clusters as a node is reported. The self-assembly of Ln3+, Cu2+ and amino acid in solution leads to the formation of two polymers, 35-nuclear complex [Sm6Cu29] 1 with a primitive cubic net-like structure and 36-nuclear complex [Nd6Cu30] 2 with a face-centred cubic network type structure. Glycine and L-proline, respectively, were used as ligands.
View Article and Find Full Text PDFWith glycine or L-alanine as ligands, a series of novel 3d-4f heterometallic Ln(6)Cu(24) clusters with the formulas of [Sm(6)Cu(24)(mu(3)-OH)(30)(Gly)(12)(Ac)(12)(ClO(4))(H(2)O)(16)].(ClO(4))(9).(OH)(2).
View Article and Find Full Text PDF