Publications by authors named "Guido Groeseneken"

The recent demonstration of ferroelectricity in ultrathin HfO has kickstarted a new wave of research into this material. HfO in the orthorhombic phase can be considered the first and only truly nanoscale ferroelectric material that is compatible with silicon-based nanoelectronics applications. In this article, we demonstrate the ferroelectric control of the magnetic properties of cobalt deposited on ultrathin aluminum-doped, atomic layer deposition-grown HfO ( = 6.

View Article and Find Full Text PDF

We present distinct asymmetric plasmon-induced noise properties of ionic transport observed through gold coated nanopores. We thoroughly investigated the effects of bias voltage and laser illumination. We show that the potential drop across top-coated silicon nanocavity pores can give rise to a large noise asymmetry (∼2-3 orders of magnitude).

View Article and Find Full Text PDF

Fast and reversible modulation of ion flow through nanosized apertures is important for many nanofluidic applications, including sensing and separation systems. Here, we present the first demonstration of a reversible plasmon-controlled nanofluidic valve. We show that plasmonic nanopores (solid-state nanopores integrated with metal nanocavities) can be used as a fluidic switch upon optical excitation.

View Article and Find Full Text PDF

The crystalline orientation effect is investigated for post-treatments of a replacement metal gate (RMG) p-type bulk fin field effect transistor (FinFET). After post-deposition annealing (PDA) and SF6 plasma treatment, the hole mobility is improved. From low-frequency noise analysis, reduction of the trap density and noise level is observed in PDA- and SF6-plasma-treated devices.

View Article and Find Full Text PDF

The ionic properties of a metal-coated silicon nanopore were examined in a nanofluidic system. We observed a strong increase of the ionic noise upon laser light illumination. The effect appeared to be strongly mediated by the resonant excitation of surface plasmons in the nanopore as was demonstrated by means of ionic mapping of the plasmonic electromagnetic field.

View Article and Find Full Text PDF

Carbon nanotubes (CNT) are known to be materials with potential for manufacturing sub-20 nm high aspect ratio vertical interconnects in future microchips. In order to be successful with respect to contending against established tungsten or copper based interconnects, though, CNT must fulfil their promise of also providing low electrical resistance in integrated structures using scalable integration processes fully compatible with silicon technology. Hence, carefully engineered growth and integration solutions are required before we can fully exploit their potentialities.

View Article and Find Full Text PDF

A technique is proposed to grow horizontal carbon nanotubes (CNTs) bridging metal electrodes and to assess their electrical properties. A test structure was utilized that allows for selective electrochemical sidewall catalyst placement. The selectivity of the technique is based on the connection of the desired metal electrodes to the silicon substrate where the potential for electrochemical deposition was applied.

View Article and Find Full Text PDF