Publications by authors named "Guidice J"

Although the effects of cigarette smoke (CS) on the development of several intestinal diseases is well documented, the impact of e-cigarette aerosol (e-cig) on digestive health is largely unknown. To compare the effects of e-cig and CS on mouse ileum and colon, animals were chronically exposed for 6 months by nose-only inhalation to e-cig at 18 or 30 W power, or to 3R4F CS. Results showed that e-cig exposure decreased colon cell proliferation.

View Article and Find Full Text PDF

Smoking is an established risk factor for various pathologies including lung cancer. Electronic cigarettes (e-cigs) and heated tobacco products (HTPs) have appeared on the market in recent years, but their safety or, conversely, their toxicity has not yet been demonstrated. This study aimed to compare the metabolome of human lung epithelial cells exposed to emissions of e-cigs, HTPs, or 3R4F cigarettes in order to highlight potential early markers of toxicity.

View Article and Find Full Text PDF

Background: Aluminum-based adjuvants (ABAs) enhance the immune response following vaccine injection. Their mechanisms of action are not fully understood, and their bio-persistency have been described associated with long-term adverse effects.

Methods: We evaluated and compared the cellular effects of the two main ABAs and whole vaccines on ATP production, ROS generation and cytokines production (IL-6 and IL-10), using THP-1 cells.

View Article and Find Full Text PDF

Electronic cigarettes (e-cig) and heated tobacco products (HTP) are often used as smoking cessation aids, while the harm reduction effects of these alternatives to cigarettes are still the subject of controversial debate, in particular regarding their carcinogenic potential. The objective of this study is to compare the effects of e-cig, HTP and conventional cigarette emissions on the generation of oxidative stress and genetic and epigenetic lesions in human bronchial epithelial BEAS-2B cells. Our results show that HTP were less cytotoxic than conventional cigarettes while e-cig were not substantially cytotoxic in BEAS-2B cells.

View Article and Find Full Text PDF

More than 7 million early deaths/year are attributable to air pollution. Current health concerns are especially focused on air pollution-derived particulate matter (PM). Although oxidative stress-induced airway inflammation is one of the main adverse outcome pathways triggered by air pollution-derived PM, the persistence of both these underlying mechanisms, even after exposure cessation, remained poorly studied.

View Article and Find Full Text PDF

Introduction: MicroRNAs are epigenetic regulatory factors capable of silencing the expression of target genes and might mediate the effects of air pollution on health. The objective of the present population-based study was to investigate the association between microRNA expression and long-term, residential exposure to atmospheric PM and NO.

Method: We included 998 non-smoking adult participants from the cross-sectional ELISABET survey (2010-2014) in the Lille urban area of France.

View Article and Find Full Text PDF

Metabolite identification in untargeted metabolomics is complex, with the risk of false positive annotations. This work aims to use machine learning to successively predict the retention time (Rt) and the collision cross-section (CCS) of an open-access database to accelerate the interpretation of metabolomic results. Standards of metabolites were tested using liquid chromatography coupled with high-resolution mass spectrometry.

View Article and Find Full Text PDF

Recent evidence has supported welding fume (WF)-derived ultrafine particles (UFP) could be the driving force of their adverse health effects. However, UFP have not yet been extensively studied and are currently not included in present air quality standards/guidelines. Here, attention was focused on the underlying genetic and epigenetic mechanisms by which the quasi-UFP (Q-UFP, i.

View Article and Find Full Text PDF

Introduction: Air pollution has an impact on health, and low-grade inflammation might be one of the underlying mechanisms. The objective of the present study of adults from northern France was to assess the associations between short-term and residential exposure to air pollution and levels of various inflammatory biomarkers.

Methods: The cross-sectional Enquête Littoral Souffle Air Biologie Environnement (ELISABET) study was conducted from 2011 to 2013 in the Lille and Dunkirk urban areas of northern France.

View Article and Find Full Text PDF

The impact of dietary advanced glycation end products (dAGEs) on human health has been discussed in many studies but, to date, no consensual pathophysiological process has been demonstrated. The intestinal absorption pathways which have so far been described for dAGEs, the passive diffusion of free AGE adducts and transport of glycated di-tripeptides by the peptide transporter 1 (PEPT-1), are not compatible with certain pathophysiological processes described. To get new insight into the intestinal absorption pathways and the pathophysiological mechanisms of dAGEs, we initiated an in vivo study with a so-called simple animal model with a complete digestive tract, .

View Article and Find Full Text PDF

Tobacco smoking is classified as a human carcinogen. A wide variety of new products, in particular electronic cigarettes (e-cigs), have recently appeared on the market as an alternative to smoking. Although the in vitro toxicity of e-cigs is relatively well known, there is currently a lack of data on their long-term health effects.

View Article and Find Full Text PDF

New toxicological research is still urgently needed to improve the current knowledge about the induction of some underlying mechanisms of toxicity by the different chemical fractions of ambient particulate matter (PM). This in vitro study sought also to better evaluate and compare the respective toxicities of fine particles (PM) and their inorganic and organic chemical fractions, and the respective toxicities of the organic chemical fractions of PM and quasi-ultrafine particles (PM). Human bronchial epithelial BEAS-2B cells were also exposed for 6-48 h to relatively low doses of PM and their organic extractable (OEM) and non-extractable (NEM) fractions, and the organic extractable fraction (OEM) of PM.

View Article and Find Full Text PDF

Air pollution is a public health issue and the toxicity of ambient particulate matter (PM) is well-recognized. Although it does not mostly contribute to the total mass of PM, increasing evidence indicates that the ultrafine fraction has generally a greater toxicity than the others do. A better knowledge of the underlying mechanisms involved in the pathological disorders related to nanoparticles (NPs) remains essential.

View Article and Find Full Text PDF

The electronic cigarettes (e-cigs) and more recently the heated tobacco products (HTP) provide alternatives for smokers as they are generally perceived to be less harmful than conventional cigarettes. However, it is crucial to compare the health risks of these different emergent devices, in order to determine which product should be preferred to substitute cigarette. The present study aimed to compare the composition of emissions from HTP, e-cigs and conventional cigarettes, regarding selected harmful or potentially harmful compounds, and their toxic impacts on the human bronchial epithelial BEAS-2B cells.

View Article and Find Full Text PDF

Nowadays ambient particulate matter (PM) levels still regularly exceed the guideline values established by World Health Organization in most urban areas. Numerous experimental studies have already demonstrated the airway toxicity of the fine fraction of PM (FP), mainly triggered by oxidative stress-induced airway inflammation. However, only few studies have actually paid close attention to the ultrafine fraction of PM (UFP), which is likely to be more easily internalized in cells and more biologically reactive.

View Article and Find Full Text PDF

To date no study has been able to clearly attribute the observed toxicological effects of atmospheric particles (PM) to a specific class of components. The toxicity of both the organic extractable matter (OEM) and non-extractable matter (NEM) of fine particles (PM) was compared to that of PM in its entirety on normal human epithelial bronchial BEAS-2B cells in culture. The specific effect of the quasi-ultrafine fraction (PM) was assessed, by comparing the responses of cells exposed to the PM and PM organic extractable matter, OEM and OEM respectively.

View Article and Find Full Text PDF

Cadmium is an environmental pollutant well known for its nephrotoxic effects. Nevertheless, mechanisms underlying nephrotoxicity continue to be elucidated. MicroRNAs (miRNAs) have emerged in recent years as modulators of xenobiotic-induced toxicity.

View Article and Find Full Text PDF

Purpose: A cross-sectional study was conducted in a group of Algerian welders to study the relationship between the exposure to metal particles from welding fumes and the concentration of three circulating miRNAs, miR-21, miR-146a and miR-155, as markers of renal function injury.

Methods: Characteristics of the subjects and the curriculum laboris were determined by questionnaires. We measured the concentrations of metals in blood and urine samples using ICP-MS.

View Article and Find Full Text PDF

Air pollution and particulate matter (PM) are classified as carcinogenic to humans. Pollutants evidence for public health concern include coarse (PM) and fine (PM) particles. However, ultrafine particles (PM) are assumed to be more toxic than larger particles, but data are still needed to better understand their mechanism of action.

View Article and Find Full Text PDF

The knowledge of the underlying mechanisms by which particulate matter (PM) exerts its health effects is still incomplete since it may trigger various symptoms as some persons may be more susceptible than others. Detailed studies realized in more relevant in vitro models are highly needed. Healthy normal human bronchial epithelial (NHBE), asthma-diseased human bronchial epithelial (DHBE), and COPD-DHBE cells, differentiated at the air-liquid interface, were acutely or repeatedly exposed to fine (i.

View Article and Find Full Text PDF

Exposure to particulate matter (PM) is leading to various respiratory health outcomes. Compared to coarse and fine particles, less is known about the effects of chronic exposure to ultrafine particles, despite their higher number and reactivity. In the present study, we performed a time-course experiment in mice to better analyze the lung impact of atmospheric ultrafine particles, with regard to the effects induced by fine particles collected on the same site.

View Article and Find Full Text PDF

A particular attention has been devoted to the type of toxicological responses induced by particulate matter (PM), since their knowledge is greatly complicated by the fact that it is a heterogeneous and often poorly described pollutant. However, despite intensive research effort, there is still a lack of knowledge about the specific chemical fraction of PM, which could be mainly responsible of its adverse health effects. We sought also to better investigate the toxicological effects of organic extractable matter (OEM) in normal human bronchial epithelial lung BEAS-2B cells.

View Article and Find Full Text PDF

In order to clarify whether the mitochondrial dysfunction is closely related to the cell homeostasis maintenance after particulate matter (PM) exposure, oxidative, inflammatory, apoptotic and mitochondrial endpoints were carefully studied in human bronchial epithelial BEAS-2B, normal human bronchial epithelial (NHBE) and chronic obstructive pulmonary disease (COPD)-diseased human bronchial epithelial (DHBE) cells acutely or repeatedly exposed to air pollution-derived PM. Some modifications of the mitochondrial morphology were observed within all these cell models repeatedly exposed to the highest dose of PM. Dose- and exposure-dependent oxidative damages were reported in BEAS-2B, NHBE and particularly COPD-DHBE cells acutely or repeatedly exposed to PM.

View Article and Find Full Text PDF

Owing to their harmful effects on human health, the presence of carbonyl compounds in e-cigarette aerosols raises concerns. To date, the reported concentration levels in e-vapors vary greatly between studies and several factors that markedly influence carbonyl emission during vaping have been highlighted including the heating temperature, the power supply, the device architecture, the filling level of the tank and the main e-liquid constituents. This study investigated the impact of puffing regimen parameters on the carbonyl composition of e-cigarette aerosols with the aim of: (1) better estimating the variability of carbonyl emissions depending on puffing conditions; (2) highlighting puffing profiles that increase the exposure to carbonyls; and (3) estimating to what extent puffing topography could be implied in the variability of carbonyl concentrations reported in the current literature.

View Article and Find Full Text PDF

Exposure of the mother to adverse events during pregnancy is known to induce pathological programming of the HPA axis in the progeny, thereby increasing the vulnerability to neurobehavioral disorders. Maternal care plays a crucial role in the programming of the offspring, and oxytocin plays a key role in mother/pup interaction. Therefore, we investigated whether positive modulation of maternal behavior by activation of the oxytocinergic system could reverse the long-term alterations induced by perinatal stress (PRS; gestational restraint stress 3 times/day during the last ten days of gestation) on HPA axis activity, risk-taking behavior in the elevated-plus maze, hippocampal mGlu5 receptor and gene expression in Sprague-Dawley rats.

View Article and Find Full Text PDF