Publications by authors named "Guici Chen"

This paper investigates the finite/fixed-time synchronization problem of delayed inertial memristive neural networks (DIMNNs) using interval matrix-based methods within a unified control framework. By employing set-valued mapping and differential inclusion theory, two distinct methods are applied to handle the switching behavior of memristor parameters: the maximum absolute value method and the interval matrix method. Based on these different approaches, two control strategies are proposed to select appropriate control parameters, enabling the system to achieve finite and fixed-time synchronization, respectively.

View Article and Find Full Text PDF

The synchronization problem of bidirectional associative memory memristive neural networks (BAMMNNs) with time-varying delays plays an essential role in the implementation and application of neural networks. Firstly, under the framework of the Filippov's solution, the discontinuous parameters of the state-dependent switching are transformed by convex analysis method, which is different from most previous approaches. Secondly, based on Lyapunov function and some inequality techniques, several conditions for the fixed-time synchronization (FXTS) of the drive-response systems are obtained by designing special control strategies.

View Article and Find Full Text PDF

The time series of blood glucose concentration in diabetic patients are time-varying, nonlinear, and non-stationary. In order to improve the accuracy of blood glucose prediction, a multi-scale combination short-term blood glucose prediction model was constructed by combining the variational mode decomposition (VMD) method, the kernel extreme learning machine (KELM), and the AdaBoost algorithm (VMD-ELM-AdaBoost). Firstly, the blood glucose concentration series were decomposed into a set of intrinsic modal functions (IMFs) with different scales by the VMD method.

View Article and Find Full Text PDF

Fetal electrocardiogram signal extraction is of great significance for perinatal fetal monitoring. In order to improve the prediction accuracy of fetal electrocardiogram signal, this paper proposes a fetal electrocardiogram signal extraction method (GA-LSTM) based on genetic algorithm (GA) optimization with long and short term memory (LSTM) network. Firstly, according to the characteristics of the mixed electrocardiogram signal of the maternal abdominal wall, the global search ability of the GA is used to optimize the number of hidden layer neurons, learning rate and training times of the LSTM network, and the optimal combination of parameters is calculated to make the network topology and the mother body match the characteristics of the mixed signals of the abdominal wall.

View Article and Find Full Text PDF

In this paper, the finite-time synchronization problems of two types of driven-response memristor neural networks (MNNs) without time-delay and with time-varying delays are investigated via interval matrix method, respectively. Based on interval matrix transformation, the driven-response MNNs are transformed into a kind of system with interval parameters, which is different from the previous research approaches. Several sufficient conditions in terms of linear matrix inequalities (LMIs) are driven to guarantee finite-time synchronization for MNNs.

View Article and Find Full Text PDF