Publications by authors named "Guibiao Yang"

Our knowledge on permafrost carbon (C) cycle is crucial for understanding its feedback to climate warming and developing nature-based solutions for mitigating climate change. To understand the characteristics of permafrost C cycle on the Tibetan Plateau, the largest alpine permafrost region around the world, we summarized recent advances including the stocks and fluxes of permafrost C and their responses to thawing, and depicted permafrost C dynamics within this century. We find that this alpine permafrost region stores approximately 14.

View Article and Find Full Text PDF

Knowledge about changes in plant functional traits is valuable for the mechanistic understanding of warming effects on ecosystem functions. However, observations have tended to focus on aboveground plant traits, and there is little information about changes in belowground plant traits or the coordination of above- and belowground traits under climate warming, particularly in permafrost ecosystems. Based on a 7-yr field warming experiment, we measured 26 above- and belowground plant traits of four dominant species, and explored community functional composition and trait networks in response to experimental warming in a permafrost ecosystem on the Tibetan Plateau.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding methane emissions from thermokarst lakes is key to predicting the impacts of permafrost thaw on climate change, yet data from high-altitude areas is limited.
  • The study analyzed 120 thermokarst lakes across a 1100 km stretch of the Tibetan Plateau, finding significant CH emissions (13.4 mmol/m²/day) during the ice-free period.
  • The majority of these emissions (84%) come from ebullition primarily driven by the decomposition of young carbon, with a correlation observed between methanogenic gene abundance and methane flux.
View Article and Find Full Text PDF

Warming-induced permafrost thaw may stimulate soil respiration (Rs) and thus cause a positive feedback to climate warming. However, due to the limited in situ observations, it remains unclear about how Rs and its autotrophic (Ra) and heterotrophic (Rh) components change upon permafrost thaw. Here we monitored variations in Rs and its components along a permafrost thaw sequence on the Tibetan Plateau, and explored the potential linkage of Rs components (i.

View Article and Find Full Text PDF

Ecosystem carbon (C) dynamics after permafrost thaw depends on more than just climate change since soil nutrient status may also impact ecosystem C balance. It has been advocated that nitrogen (N) release upon permafrost thaw could promote plant growth and thus offset soil C loss. However, compared with the widely accepted C-N interactions, little is known about the potential role of soil phosphorus (P) availability.

View Article and Find Full Text PDF

Permafrost thaw could increase methane (CH) emissions, which largely depends on CH production driven by methanogenic archaea. However, large-scale evidence regarding key methanogenic taxa and their relative importance to abiotic factors in mediating methanogenesis remains limited. Here, we explored the methanogenic community, potential CH production and its determinants in the active layer and permafrost deposits based on soil samples acquired from 12 swamp meadow sites along a ∼1000 km permafrost transect on the Tibetan Plateau.

View Article and Find Full Text PDF

Background And Aims: Knowledge of plant resource acquisition strategies is crucial for understanding the mechanisms mediating the responses of ecosystems to external nitrogen (N) input. However, few studies have considered the joint effects of above-ground (light) and below-ground (nutrient) resource acquisition strategies in regulating plant species responses to N enrichment. Here, we quantified the effects of light and non-N nutrient acquisition capacities on species relative abundance in the case of extra N input.

View Article and Find Full Text PDF

Permafrost thaw could induce substantial carbon (C) emissions to the atmosphere, and thus trigger a positive feedback to climate warming. As the engine of biogeochemical cycling, soil microorganisms exert a critical role in mediating the direction and strength of permafrost C-climate feedback. However, our understanding about the impacts of thermokarst (abrupt permafrost thaw) on microbial structure and function remains limited.

View Article and Find Full Text PDF

The ecosystem carbon (C) balance in permafrost regions, which has a global significance in understanding the terrestrial C-climate feedback, is significantly regulated by nitrogen (N) dynamics. However, our knowledge on temporal changes in vegetation N limitation (i.e.

View Article and Find Full Text PDF

Methane (CH) dynamics across permafrost regions is critical in determining the magnitude and direction of permafrost carbon (C)-climate feedback. However, current studies are mainly derived from the Arctic area, with limited evidence from other permafrost regions. By combining large-scale laboratory incubation across 51 sampling sites with machine learning techniques and bootstrap analysis, here, we determined regional patterns and dominant drivers of CH oxidation potential in alpine steppe and meadow (CH sink areas) and CH production potential in swamp meadow (CH source areas) across the Tibetan alpine permafrost region.

View Article and Find Full Text PDF

The modification of soil organic matter (SOM) decomposition by plant carbon (C) input (priming effect) represents a critical biogeochemical process that controls soil C dynamics. However, the patterns and drivers of the priming effect remain hidden, especially over broad geographic scales under various climate and soil conditions. By combining systematic field and laboratory analyses based on multiple analytical and statistical approaches, we explore the determinants of priming intensity along a 2200 km grassland transect on the Tibetan Plateau.

View Article and Find Full Text PDF

Nitrogen (N) status has a great impact on methane (CH) consumption by soils. Modeling studies predicting soil CH consumption assume a linear relationship between CH uptake and N addition rate. Here, we present evidence that a nonlinear relationship may better characterize changes in soil CH uptake with increasing N additions.

View Article and Find Full Text PDF

Permafrost soils store a large amount of nitrogen (N) which could be activated under the continuous climate warming. However, compared with carbon (C) stock, little is known about the size and spatial distribution of permafrost N stock. By combining measurements from 519 pedons with two machine learning models (supporting vector machine (SVM) and random forest (RF)), we estimated the size and spatial distribution of N stock across the Tibetan alpine permafrost region.

View Article and Find Full Text PDF

Input of labile carbon may accelerate the decomposition of existing soil organic matter (priming effect), with the priming intensity depending on changes in soil nitrogen availability after permafrost thaw. However, experimental evidence for the linkage between the priming effect and post-thaw nitrogen availability is unavailable. Here we test the hypothesis that elevated nitrogen availability after permafrost collapse inhibits the priming effect by increasing microbial metabolic efficiency based on a combination of thermokarst-induced natural nitrogen gradient and nitrogen addition experiment.

View Article and Find Full Text PDF

Permafrost thawing may release nitrous oxide (NO) due to large N storage in cold environments. However, NO emissions from permafrost regions have received little attention to date, particularly with respect to the underlying microbial mechanisms. We examined the magnitude of NO fluxes following upland thermokarst formation along a 20-year thaw sequence within a thermo-erosion gully in a Tibetan swamp meadow.

View Article and Find Full Text PDF

Permafrost thaw alters the physical and environmental conditions of soil and may thus cause a positive feedback to climate warming through increased methane emissions. However, the current knowledge of methane emissions following thermokarst development is primarily based on expanding lakes and wetlands, with upland thermokarst being studied less often. In this study, we monitored the methane emissions during the peak growing seasons of two consecutive years along a thaw sequence within a thermo-erosion gully in a Tibetan swamp meadow.

View Article and Find Full Text PDF

Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales.

View Article and Find Full Text PDF

Large uncertainties exist in carbon (C)-climate feedback in permafrost regions, partly due to an insufficient understanding of warming effects on nutrient availabilities and their subsequent impacts on vegetation C sequestration. Although a warming climate may promote a substantial release of soil C to the atmosphere, a warming-induced increase in soil nutrient availability may enhance plant productivity, thus offsetting C loss from microbial respiration. Here, we present evidence that the positive temperature effect on carbon dioxide (CO ) fluxes may be weakened by reduced plant nitrogen (N) and phosphorous (P) concentrations in a Tibetan permafrost ecosystem.

View Article and Find Full Text PDF

Unprecedented levels of nitrogen (N) have entered terrestrial ecosystems over the past century, which substantially influences the carbon (C) exchange between the atmosphere and biosphere. Temperature and moisture are generally regarded as the major controllers over the N effects on ecosystem C uptake and release. N-phosphorous (P) stoichiometry regulates the growth and metabolisms of plants and soil organisms, thereby affecting many ecosystem C processes.

View Article and Find Full Text PDF

The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which limits our understanding of the fate of frozen carbon in a warming world. In particular, the lack of comprehensive estimates of OC stocks across alpine permafrost means that current knowledge on this issue remains incomplete.

View Article and Find Full Text PDF