The integration of membrane separation with heterogeneous advanced oxidation processes is a prospective strategy for the elimination of contaminants during wastewater treatment. Fe-based catalysts and the green oxidant peracetic acid (PAA) are desirable candidates for the development of catalytic membranes because they are environmentally friendly. However, the construction of catalytic ceramic membranes (CMs) modified with efficient Fe-based catalysts that generate increased amounts of high-valent Fe-O species during PAA activation for the degradation of specific pollutants, especially during instantaneous membrane filtration, remains challenging.
View Article and Find Full Text PDFThe presence of per- and polyfluoroalkyl substances (PFAS) in surface water has been widely reported in recent years. Many techniques, e.g.
View Article and Find Full Text PDFA self-corrosion microelectrolysis (SME)-enhanced membrane-aerated biofilm reactor (eMABR) was developed for the removal of pollutants and reduction of antibiotic resistance genes (ARGs). Fe and Fe formed iron oxides on the biofilm, which enhanced the adsorption and redox process. SME can induce microorganisms to secrete more extracellular proteins and up-regulate the expression of ammonia monooxygenase (AMO) (0.
View Article and Find Full Text PDFJ Environ Sci (China)
December 2024
Many waterborne diseases are related with viruses, and COVID-19 worldwide has raised the concern of virus security in water into the public horizon. Compared to other conventional water treatment processes, membrane technology can achieve satisfactory virus removal with fewer chemicals, and prevent the outbreaks of viruses to a maximal extent. Researchers developed new modification methods to improve membrane performance.
View Article and Find Full Text PDFEstablishing an economic and sustained Fenton oxidation system to enhance sludge dewaterability and carbamazepine (CBZ) removal rate is a crucial path to simultaneously achieve sludge reduction and harmless. Leveraging the principles akin to "tea making", we harnessed tea waste to continually release tea polyphenols (TP), thus effectively maintaining high level of oxidation efficiency through the sustained Fenton reaction. The results illustrated that the incorporation of tea waste yielded more favorable outcomes in terms of water content reduction and CBZ removal compared to direct TP addition within the Fe(III)/hydrogen peroxide (HO) system.
View Article and Find Full Text PDFEnviron Sci Technol
April 2024
The established benefits of ozone on microbial pathogen inactivation, natural organic matter degradation, and inorganic/organic contaminant oxidation have favored its application in drinking water treatment. However, viable bacteria are still present after the ozonation of raw water, bringing a potential risk to membrane filtration systems in terms of biofilm accumulation and fouling. In this study, we shed light on the role of the specific ozone dose (0.
View Article and Find Full Text PDFGraphene oxide (GO)-based laminar membranes are promising candidates for next-generation nanofiltration membranes because of their theoretically frictionless nanochannels. However, nonuniform stacking during the filtration process and the inherent swelling of GO nanosheets generate horizontal and vertical defects, leading to a low selectivity and susceptibility to pore blockage. Herein, both types of defects are simultaneously patching by utilizing tannic acid and Fe.
View Article and Find Full Text PDFThe complex organic and inorganic solutes present in nanofiltration's purification by-product (NF concentrate, NFC) pose challenges to the water processing procedure. To address this, a three-compartment membrane electrolyzer was proposed that facilitates electro-driven ion migration for crystallization alongside synchronous anodic oxidation for organic degradation. With a hydraulic retention time (HRT) of 5 min and a current exceeding 50 mA, the system effectively separated over 25 % of inorganic salts and accomplished reclamation through crystallization in the concentration compartment.
View Article and Find Full Text PDFThe application of ultrafiltration (UF) in wastewater reclamation alleviates the demand for limited water supplies. However, the membrane fouling caused by the effluent organic matter (EfOM) becomes a major obstacle for UF application. In this study, a pre-oxidation strategy for UF using a Sb-SnO (ATO) anode in flow-through mode was proposed with the hopes to improve the performance of UF during wastewater reclamation.
View Article and Find Full Text PDFThe presence of manganese(II) in drinking water sources poses a significant treatment difficulty for water utilities, thus necessitating the development of effective removal strategies. Treatment by Fe(VI), a combined oxidant and coagulant, has been identified as a potential green solution; however, its effectiveness is hampered by natural organic matter (NOM), and this underlying mechanism is not fully understood. Here, we investigated the inhibitory effect of three different types of NOM, representing terrestrial, aquatic, and microbial origins, on Mn(II) removal and floc growth during Fe(VI) coagulation.
View Article and Find Full Text PDFNanofiltration membranes have increasingly played a vital role in the purification of surface water and the recycling of wastewater. However, the problem of membrane biofouling, which leads to shortened service life and increased energy consumption, has hindered the widespread application of nanofiltration membranes. In this study, we developed functionalized nanofiltration membranes with anti-adhesive and anti-biofouling properties by coordinating Fe and juglone onto commercial nanofiltration membranes in a facile and viable manner.
View Article and Find Full Text PDFMembrane aerated biofilm reactors (MABRs) can be used to treat domestic wastewater containing sulfamethoxazole (SMX) because of their favorable performance in the treatment of refractory pollutants. However, biologics are generally subjected to antibiotics stress, which induces the production of antibiotic resistance genes (ARGs). In this study, a simulated-sunlight assisted MABR (L-MABR) was used to promote SMX removal and reduce ARGs production.
View Article and Find Full Text PDFEven though pre-oxidation is usually considered as a promising method to alleviate membrane fouling, information on performance and inner mechanisms of pre-oxidation-influenced membrane fouling during nanofiltration of brackish water is still limited. This study is the first work in which oxidant reduction byproducts and interaction between different pollutants were particularly considered to address these problems. Herein, nanofiltration experiments with different pre-oxidized synthesis brackish water containing inorganic salts and organic pollutants were conducted.
View Article and Find Full Text PDFUtilizing brackish water resources has imposed a high requirement on the design and construction of nanofiltration membranes. To overcome the limitation of high salt concentration on the nanofiltration separation performance resulting from the weakened Donnan effect, a nanofiltration membrane with the effect of salt-responsive ion valves was developed by incorporating zwitterionic nanospheres into the polyamide layer (PA-ZNs). The interaction between the nanospheres and membranes at high salinity was revealed through a combination analysis from the perspectives of water transport model, positron annihilation spectroscopy, and solute rejection, contributing to the formation of the valve effect.
View Article and Find Full Text PDFA photocatalytic membrane coated with α-FeO/FeO nanoparticles has been developed to address the challenges of membrane fouling and organic removal in the treatment of natural surface water. The photocatalytic and filtration properties of the membranes were investigated through a variety of methods. The successful preparation of iron oxide was confirmed by UV-vis diffuse reflectance spectra and X-ray diffractometry, with α-FeO identified as the primary photocatalytic agent.
View Article and Find Full Text PDFThe application of ultrafiltration (UF) technology in algae-laden water is limited due to the serious membrane fouling caused by algal foulants. Herein, a Ferrate/FeSO(Fe(VI)/Fe(II)) pretreatment was proposed aiming to improve the performance of UF. The results showed that the synergistic of Fe(VI) and Fe(II) significantly increased the zeta potential of Microcystis aeruginosa, which enhanced the agglomerative tendency of algal foulants, and the particle size of flocs remarkably increased due to the in-situ generated Fe(III).
View Article and Find Full Text PDFThis study aimed at investigating the removal performance of the gravity-driven membrane (GDM) system in treating the heavy metals-containing secondary effluent, as well as evaluating the respective roles of Fe and Mn addition on the removal of heavy metals. GDM process with the formation of biocake layer exerted effective removals of Cr, Pb and Cd, with an average removal efficiency of 98%, 95% and 40%, respectively, however, after removing the biocake layer, the removal efficiencies of Cr, Pb and Cd reduced to 59%, 85% and 19%, respectively, indicating that the biocake layer played a fundamental role in removing heavy metals. With the assistance of Fe, the removal efficiency of heavy metals increased, and exhibited a positive response to the Fe dosage, due to the adsorption by the freshly generated iron oxides.
View Article and Find Full Text PDFImproving the nanofiltration (NF) performance of membrane-based treatment is conducive to promoting environmental water recycling and addressing water resource depletion. Combinations of light, electricity, and heat with traditional techniques of preparing membranes should optimize membrane performance. Interfacial polymerization and photopolymerization were integrated to construct a photopolymerized thin-film composite NF membrane with a ridged surface morphology.
View Article and Find Full Text PDFIn over 60 years of research, my team and I have focused on Fe/Mn removal and the application of KMnO in drinking water purification, and we have made several technological innovations during this period. In response to the basic need to remove Fe and Mn from groundwater sources in the early days of People's Republic of China, I firstly introduced a catalytic technology involving the application of natural manganese sand produced in China as one of the simplest, cost-effective techniques. During experiments, many phenomena that were inconsistent with conventional theories were observed and a new mechanism was proposed, indicating iron/manganese active films as a catalytic agent instead of MnO.
View Article and Find Full Text PDFIn this research, the effects of combined powdered activated carbon (PAC)-ozone (O) pretreatment on ultrafiltration (UF) performance were comprehensively examined and compared with the conventional O-PAC pretreatment. The performance of pretreatments on mitigating membrane fouling caused by Songhua River water (SHR) was evaluated by specific flux, membrane fouling resistance distribution, and membrane fouling index. Moreover, the degradation of natural organic matter in SHR was investigated by UV absorbance at 254 nm (UV), dissolved organic carbon (DOC), and fluorescent organic matter.
View Article and Find Full Text PDFRegulation of the fast electron transport process for the generation and utilization of reactive oxygen species (ROS) by achieving fortified electron "nanofluidics" is effective for electrocatalytic oxidation of organic microcontaminants. However, limited available active sites and sluggish mass transfer impede oxidation efficiency. Herein, we fabricated a conductive electrocatalytic membrane decorated with hierarchical porous vertically aligned Fe(II)-modulated FeCo layered double hydroxide nanosheets (Fe(II)-FeCo LDHs) in an electro-Fenton system to maximize exposure of active sites and expedite mass transfer.
View Article and Find Full Text PDF