Int J Environ Res Public Health
July 2022
Biomimetic materials inspired by biominerals have substantial applications in various fields. The prismatic layer of bivalve molluscs has extraordinary flexibility compared to inorganic CaCO. Previous studies showed that in the early stage, minerals expanded horizontally and formed prism domains as a Voronoi division, while the evolution of the mature prisms were thermodynamically driven, which was similar to grain growth.
View Article and Find Full Text PDFMatrix proteins play important roles in shell formation. Our group firstly isolated three cDNAs encoding lysine-rich matrix protein from Pinctada fucata in 2006. However, the functions of KRMPs are not fully understood.
View Article and Find Full Text PDFThe growth of molluscan shell crystals is generally thought to be initiated from the extrapallial fluid by matrix proteins, however, the cellular mechanisms of shell formation pathway remain unknown. Here, we first report amorphous calcium carbonate (ACC) precipitation by cellular biomineralization in primary mantle cell cultures of Pinctada fucata. Through real-time PCR and western blot analyses, we demonstrate that mantle cells retain the ability to synthesize and secrete ACCBP, Pif80 and nacrein in vitro.
View Article and Find Full Text PDFGenes encoding uridine phosphorylase (UP) and thymidine phosphorylase (TP) from Escherichia coli K12 were cloned and recombined respectively into plasmids pET-21a(+) and pET-28a(+). The recombinant plasmids BL21/pET21a-UP and BL21/pET28a-TP were co-transformed into E. coli BL21(DE3) to construct highly effective BTU strain (BL21/pET28a-TP, pET21a-UP) overexpressing both of UP and TP.
View Article and Find Full Text PDFMagnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium.
View Article and Find Full Text PDFThe initial growth of the nacreous layer is crucial for comprehending the formation of nacreous aragonite. A flat pearl method in the presence of the inner-shell film was conducted to evaluate the role of matrix proteins in the initial stages of nacre biomineralization in vivo. We examined the crystals deposited on a substrate and the expression patterns of the matrix proteins in the mantle facing the substrate.
View Article and Find Full Text PDFACC (amorphous calcium carbonate) plays an important role in biomineralization process for its function as a precursor for calcium carbonate biominerals. However, it is unclear how biomacromolecules regulate the formation of ACC precursor in vivo. In the present study, we used biochemical experiments coupled with bioinformatics approaches to explore the mechanisms of ACC formation controlled by ACCBP (ACC-binding protein).
View Article and Find Full Text PDFMollusks shell formation is mediated by matrix proteins and many of these proteins have been identified and characterized. However, the mechanisms of protein control remain unknown. Here, we report the ubiquitylation of matrix proteins in the prismatic layer of the pearl oyster, Pinctada fucata.
View Article and Find Full Text PDFThe fine microstructure of nacre (mother of pearl) illustrates the beauty of nature. Proteins found in nacre were believed to be "natural hands" that control nacre formation. In the classical view of nacre formation, nucleation of the main minerals, calcium carbonate, is induced on and by the acidic proteins in nacre.
View Article and Find Full Text PDFN-deoxyribosyltransferases are essential enzymes in the nucleotide salvage pathway of lactobacilli. They catalyze the exchange between the purine or pyrimidine bases of 2'-deoxyribonucleosides and free pyrimidine or purine bases. In general, N-deoxyribosyltransferases are referred to as cytoplasmic enzymes, although there is no experimental evidence for this subcellular localization.
View Article and Find Full Text PDFTo study the function of pearl oyster matrix proteins in nacreous layer biomineralization in vivo, we examined the deposition on pearl nuclei and the expression of matrix protein genes in the pearl sac during the early stage of pearl formation. We found that the process of pearl formation involves two consecutive stages: (i) irregular calcium carbonate (CaCO(3)) deposition on the bare nucleus and (ii) CaCO(3) deposition that becomes more and more regular until the mature nacreous layer has formed on the nucleus. The low-expression level of matrix proteins in the pearl sac during periods of irregular CaCO(3) deposition suggests that deposition may not be controlled by the organic matrix during this stage of the process.
View Article and Find Full Text PDFWe report a unique shell margin that differed from the usual shell structure of Pinctada fucata. We observed empty organic envelopes in the prismatic layer and the formation of the nacreous layer in the shell margin. All the characteristics of the growing margin indicated that the shell was growing rapidly.
View Article and Find Full Text PDFConsidering the continuous and substantive secretory ability of the mantle in vitro, we report a new technique to produce shell-matrix proteins by inducing the mantle, after removal from the organism's body, to secrete soluble-matrix proteins into phosphate buffer. By this method, a large amount of matrix proteins could be obtained in 2 h. Experiments involving in vitro calcium carbonate crystallization and organic framework calcium carbonate crystallization indicated that these proteins retain high bioactivity and play key roles in shell biomineralization.
View Article and Find Full Text PDFJasmonates (JAs) are a new class of plant hormone that regulate expression of diverse genes to mediate various plant responses. The Arabidopsis F-box protein COI1 is required for plant defense and male fertility in JA signal pathway. To further investigate the regulatory role of COI1 in male fertility, we compared the proteomics profiles of Arabidopsis wild type (WT) flowers with coi1-1 mutant male-sterile flowers using two-dimensional difference gel electrophoresis coupled with matrix-assisted laser desoption/ionization-time-of-flight mass spectrometry.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
July 2010
The signal transduction mechanisms in mollusks are still elusive since the genome information is incomplete and cell lines are not available. In previous study, we cloned a highly conserved Smad3 homolog (designated as Pf-Smad3) from the pearl oyster, Pinctada fucata. It seems that transforming growth factor beta (TGFbeta) signaling may play similar roles in the oyster as in vertebrate.
View Article and Find Full Text PDFCalcineurin (CN), a multifunctional protein, mediates the immune response through diverse signaling pathways in mammals, while the function of CN in the immune response of molluscan hemocytes still remains unclear. In the present study, we detected the distribution of CN in various tissues and the expression levels of Pf-CNA and Pf-CNB gene in hemocytes of Pinctada fucata. After the preparation of hemocyte monolayers, we checked the response of enzymatic activity of CN, the degradation level of IkappaBalpha, the activity of iNOS and the production of NO, and IL-2 to the challenge of lipopolysaccharide (LPS) and cyclosporin A (CsA).
View Article and Find Full Text PDFCalcineurin (CN) is a multifunctional protein involved in many important physiological processes in mammalians, but the function of CN in mollusks is still largely unknown. In the present study, through the shell regeneration system, the changes of enzymatic activity of CN were determined in the process of shell regeneration in pearl oyster Pinctada fucata. CN was activated immediately and continuously in the shell regeneration process.
View Article and Find Full Text PDFNacre has two different microarchitectures: columnar nacre and sheet nacre. We previously identified an important regulator of the morphology of sheet nacre tablets, which was named amorphous calcium carbonate-binding protein (pf-ACCBP). However, little is known about its counterpart in columnar nacre.
View Article and Find Full Text PDFMantle tissue plays an important role in shell biomineralization by secreting matrix proteins for shell formation. However, the mechanism by which it regulates matrix protein secretion is poorly understood, largely because of the lack of cellular tools for in vitro study and techniques to evaluate matrix protein secretion. We have isolated the outer epithelial cells of the mantle of the pearl oyster, Pinctada fucata, and evaluated cellular metabolism by measuring the secretion of the matrix protein, nacrein.
View Article and Find Full Text PDFPretreatment with 43 nM (10 ng/mL) to 86 nM melatonin for 5 days significantly attenuated cold-induced apoptosis in carrot suspension cells (Daucus carota L.) as evidenced by the TUNEL procedure, DNA fragmentation and the morphological changes revealed by electronic microscopy observations. The antiapoptotic effect of melatonin was initially thought to be a result of its antioxidant actions.
View Article and Find Full Text PDFIn this study, the effect of EGb 761, a standard extract of Ginkgo biloba leaf, on thymocyte apoptosis and age-related thymic atrophy and on peripheral immune dysfunctions was investigated in mice. When primary culture of thymocytes was preincubated with 100 microg/ml EGb 761 before their exposure to hydroxyl radicals (*OH) generated by Fe(2+)-mediated Fenton reaction, apoptotic cell death induced by *OH was distinctly prevented as determined by DNA laddering, the TUNEL assay and flow cytometric analysis. Furthermore, oral EGb 761 administration (about 1.
View Article and Find Full Text PDFThe effect of melatonin on age-related thymic involution and peripheral immune dysfunctions was investigated. Exogenous melatonin was administered through the drinking water (15 microg/ml) of 22-month-old female C57BL mice for 60 consecutive days. Our results show that melatonin distinctly reversed the age-related thymic involution as revealed by the notable increase of thymus weight, total number of thymocytes and percentage of thymocytes at G2+S phases.
View Article and Find Full Text PDF