Dimethylsulfide (DMS) and very short-lived bromocarbons (VSL) are important biogenic trace gases emitted from oceans that can affect the global climate. Atmospheric deposition (AD) can provide nutrients and trace metals to the ocean, which can enhance primary productivity, but the complex effects of AD on DMS and VSL are still largely unexplored. A deck incubation experiment with aerosol additions was conducted to simulate the effects of acid-processed AD on the production of trace gases, including DMS and four VSL such as bromoform (CHBr), dibromomethane (CHBr), dibromochloromethane (CHBrCl), and bromodichloromethane (CHBrCl), in the oligotrophic western Pacific Ocean (WPO).
View Article and Find Full Text PDFDimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP) are important sulfur compounds influenced by community assemblages of plankton. The distributions of DMS, DMSP, DMSP lyase activity (DLA), DMSP-consuming bacteria (DCB), and community structures of phytoplankton and zooplankton were investigated during summer in the Bohai Sea and Yellow Sea. The variety ranges of DMS, dissolved DMSP (DMSP), and particulate DMSP (DMSP) concentrations in the surface seawater were 1.
View Article and Find Full Text PDFThe outbreak of Ulva prolifera blooms causes significant changes in the coastal sulfur cycle due to the high production of dimethylsulfoniopropionate (DMSP) and the emission of dimethylsulfide (DMS). However, the sulfur metabolism mechanism of U. prolifera has not been thoroughly investigated.
View Article and Find Full Text PDFNitrogen oxides (NO), comprised of nitric oxide (NO) and nitrogen dioxide (NO), play a crucial role in the global nitrogen cycle, but the oceanic occurrence remained unclear. Here, we show an integrated underway observation of oceanic and atmospheric NO and NO from the coastal seas to the open ocean in the northwestern Pacific Ocean (NWPO). The concentrations of NO and NO showed similar distribution patterns that the coastal seas with rich nitrogen nutrients showed higher levels, like the Yellow Sea (7.
View Article and Find Full Text PDFThe interplay of global climate change and anthropogenic activities has significantly affected the carbon cycle in coastal ocean environments. Consequently, further investigation into the carbonate system, carbon source and sink processes, and acidification mechanisms is essential. This study examined the surface carbonate system offshore of Qingdao, utilizing data from nine spring cruises in 2011-2019.
View Article and Find Full Text PDFNitrogen oxides (NO = NO + NO) have essential impacts on global climate and the environment, making it essential to study the contribution of wetland-generated NO to environmental problems. With exogenous nitrogen input from anthropogenic activities, wetland sediments become active emission hotspots for NO. In this study, we conducted field experiments in a typical salt marsh wetland to measure nitric oxide (NO, the primary component of NO from sediments) exchange fluxes in both mudflat and vegetated sediments.
View Article and Find Full Text PDFMicroplastics (MPs) are widespread ocean pollutants and many studies have explored their effects. However, research on MPs combined impact with copper (Cu) on dimethylated sulfur compound production is limited. Dimethyl sulfide (DMS) is an important biogenic sulfur compound related to global temperatures.
View Article and Find Full Text PDFVolatile sulfur compounds, such as dimethyl sulfide (DMS), carbonyl sulfide (OCS), and carbon disulfide (CS), significantly influence atmospheric chemistry and climate change. Despite the oceans being an important source of these sulfides, the limited understanding of their biogeochemical cycles in seawater introduces considerable uncertainties in quantifying their oceanic emissions and assessing atmospheric OCS budgets. To address this issue, we conducted a comprehensive field survey in the tropical eastern Indian Ocean (EIO) to examine the spatial distributions, source-sink dynamics, and sea-air exchange fluxes of marine DMS, OCS, and CS.
View Article and Find Full Text PDFThis study investigated the impacts of sulfamethazine (SMZ) and oxytetracycline (OTC) antibiotics on the marine microalgae Nitzschia closterium and its release of volatile halocarbons (VHCs), which contribute to ozone depletion and climate change. High concentrations of SMZ and OTC suppressed cell density, reduced chlorophyll a content, and hindered Fv/Fm elevation in N. closterium, indicating its growth was inhibited.
View Article and Find Full Text PDFBenzothiazoles (BTHs), benzotriazoles (BTRs), and benzotriazole ultraviolet absorbers (BUVs) have garnered significant attention owing to their persistent nature in the environment and adverse impacts on aquatic organisms. However, there remains a dearth of investigations and studies conducted in tropical marine environments. In this study, we undertook the inaugural distributional survey and ecotoxicological relevance of BTHs, BTRs, and BUVs in seawater and sediments of the western South China Sea (WSCS).
View Article and Find Full Text PDFDimethyl sulfide (DMS) is a prevalent volatile organic sulfur compound relevant to the global climate. Ecotoxicological effects of nano- and microplastics (NPs and MPs) on phytoplankton, zooplankton, and bacteria have been investigated by numerous studies. Yet, the influences of NPs/MPs on dimethylated sulfur compounds remains understudied.
View Article and Find Full Text PDFProtozoa play a pivotal role in the microbial cycle, and ciliated protozoan grazing habits are associated with dimethyl sulfide (DMS) cycle. Many studies have explored the impacts of nanoplastics (NPs) and microplastics (MPs) on ecotoxicological effects of ciliates. However, limited research exists on NPs and MPs influences on the production of organic sulfur compounds.
View Article and Find Full Text PDFThe sorption behavior of phosphorus on marine sediments in the presence of black carbon derived from fly ash (FC) was studied. For both the FC and sediment samples, the kinetic curves could be described by a two-compartment first order equation, and the isotherms fit the Freundlich and Langmuir models well. The high specific surface area with abundant acidic functional groups of FC promoted the sorption and make this process more irreversible.
View Article and Find Full Text PDFSea-to-air emissions of very short-lived brominated halocarbons (VSLBrHs) are known to contribute to 30 % of stratospheric and tropospheric ozone depletion. However, empirical data on their occurrence in open ocean are scarce, which makes it difficult to estimate the significant contribution of open ocean releases to the global budget of halocarbons. This study was conducted in 2022 to explore the spatial variations of VSLBrHs and their controlling factors in the western tropical Pacific Ocean (WTPO).
View Article and Find Full Text PDFDue to the potential impacts of microplastics (MPs) and nanoplastics (NPs) on algal growth and thereby affect the climate-relevant substances, dimethylsulfoniopropionate (DMSP) and dimethyl sulfide (DMS), we studied the polystyrene (PS) MPs and NPs of 1 μm and 80 nm impacts on the growth, chlorophyll content, reactive oxygen species (ROS), antioxidant enzyme activity, and DMS/DMSP production in Emiliania huxleyi. E. huxleyi is a prominent oceanic alga that plays a key role in DMS and DMSP production.
View Article and Find Full Text PDFThe carbonate chemistry in river-dominated marginal seas is highly heterogeneous, and there is ongoing debate regarding the definition of atmospheric CO source or sink. On this basis, we investigated the carbonate chemistry and air-sea CO fluxes in a hotspot estuarine area: the Changjiang Estuary during winter and summer. The spatial characteristics of the carbonate system were influenced by water mixing of three end-members in winter, including the Changjiang freshwater with low total alkalinity (TA) concentration, the less saline Yellow Sea Surface Water with high TA, and the saline East China Sea (ECS) offshore water with moderate TA.
View Article and Find Full Text PDFHalogenated organic contaminants, such as chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs), are some of the most important emerging environmental pollutants. However, empirical data on Cl/Br-PAHs in estuarine and marine ecosystems are limited, rendering assessments of Cl/Br-PAH contamination in estuarine and offshore environments uncertain. Here the occurrence, sources, and ecological risks of 7 Cl-PAHs and 18 Br-PAHs were determined in surface sediments of the Yangtze River Estuary (YRE), a highly urbanized and industrialized area, and its adjacent marine area.
View Article and Find Full Text PDFVolatile sulfur compounds, such as dimethyl sulfide (DMS), carbonyl sulfide (OCS), and carbon disulfide (CS), have significant implications for both atmospheric chemistry and climate change. Despite the crucial role of oceans in regulating their atmospheric budgets, our comprehension of their cycles in seawater remains insufficient. To address this gap, a field investigation was conducted in the western North Pacific to clarify the sources, sinks, and biogeochemical controls of these gases in two different marine environments, including relatively eutrophic Kuroshio-Oyashio extension (KOE) and oligotrophic North Pacific subtropical gyre.
View Article and Find Full Text PDFAn integrated observation of NO that included coastal cities and oceanic cruises covering the Qingdao coastal waters sites (QDCW) and the Yellow Sea and East China Sea sites (YECS) was conducted in spring. The average concentrations of the coastal cities, the QDCW, and the YECS were 5.4 ± 4.
View Article and Find Full Text PDFMicroplastics (MPs) and nanoplastics (NPs) have gained global concern due to their detrimental effects on marine organisms. We investigated the effects of 80 nm polystyrene (PS) NPs on life history traits, ingestion, and dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP) production in the rotifer Brachionus plicatilis. Fluorescently labeled 80 nm PS NPs were ingested by the rotifer B.
View Article and Find Full Text PDFThe distributions and toxicities of the pollutants benzothiazoles (BTHs), benzotriazoles (BTRs), and benzotriazole ultraviolet stabilizers (BUVs) have attracted much attention, but most research has focused on freshwater environments and few have examined their levels in marine environments. This study, for the first time, investigated the spatial and temporal variability and ecological risks of BTHs, BTRs and BUVs in the Yangtze River estuary and its adjacent area, and further elucidated how environmental factors influence the transport of these contaminants. The concentrations of BTHs, BTRs, and BUVs in seawater showed significant seasonal variability, with the highest concentrations in summer, followed by autumn, and then winter-spring.
View Article and Find Full Text PDFBenzotriazoles (BTRs), benzothiazoles (BTHs), and benzotriazole UV stabilizers (BUVs) have attracted increasing attention due to their ubiquity in the environment, toxicity, and potential ecological risks. However, information on their distributions in the ocean is scarce. In this study, BTRs, BTHs, and BUVs were firstly determined in the surface seawater, sea-surface microlayer (SML), suspended particulate matter (SPM), and sediments of the Yellow Sea (YS) and East China Sea (ECS).
View Article and Find Full Text PDFOceanic emissions are a major source of atmospheric, very short-lived, ozone-depleting, brominated substances. These substances can be produced by marine microalgae, estimates of their current and future emissions are imperfect, because the processes by which marine microalgae respond to environmental changes are rarely account for environmental pollutants. Here, concurrent measurements of the potential effects of polystyrene (PS) microplastics with concentrations of 25-100 mg/L on the growth of Phaeodactylum tricornutum and their volatile halocarbons (VHCs) production were made over a 20-day culture period.
View Article and Find Full Text PDF