Publications by authors named "Gui-Zhu Lin"

Alocasia macrorrhiza is a fast growing and propagating herbaceous species commonly found in South China. To determine its physiological responses to Pb and Cd stresses, the biochemical, histochemical and cytochemical changes under PbAC2 and CdCl2 phytotoxicity were detected using leaf discs as an experimental model. After leaf discs were infiltrated in different concentrations of PbAC2 and CdCl2 solutions (0, 50, 100, 150, 200 microM) for 72 h, the formation of reactive oxygen species (H2O2 and O2-) in plant tissue were found to be exaggerated together with elevated OH concentration and cell death.

View Article and Find Full Text PDF

The effects of long-term (33 months) sun/shade acclimation and short-term (within 10 h) HSO(3) (-) treatment on leaf photosynthetic apparatus were investigated in three subtropical forest plants, Pinus massoniana, Schima superba, and Acmena acuminatissima. After 33 months' growth in two light environments (100 and 12% sunlight), rapid light curves (RLC), chlorophyll fluorescence imaging and chloroplast ultrastructures of three tested species were changed to different degrees. When leaf sections were immersed in 50 mM NaHSO(3) for 10 h, all the RLCs were lowered; chlorophyll fluorescence imaging was inclined to present warmer colors and imaging areas were decreased.

View Article and Find Full Text PDF

The value of intrinsic chlorophyll fluorescence polarization, and the intensity in emission spectrum were investigated in leaf segments of Alocasia macrorrhiza under several stress conditions including different temperatures (25-50 degrees C), various concentrations of NaCl (0-250 mM), methyl viologen (MV, 0-25 microM), SDS (0-1.0%) and NaHSO(3) (0-80 microM). Fluorescence emission spectrum of leaves at wavelength regions of 500-800 nm was monitored by excitation at 436 nm.

View Article and Find Full Text PDF

In the present study, both electron spin resonance (ESR) and chemical detection confirmed that lutein [extracted from alfalfa (Medicago sativa L.)], the most abundant xanthophyll in thylakoids of chloroplasts, could serve as an antioxidant to scavenge reactive oxygen species (ROS) in vitro. Lutein exhibited a greater capacity for scavenging hydroxyl (OH) and superoxide (O) radicals than β-carotene at the same concentration, whereas the opposite trend was observed in the capacity for scavenging singlet oxygen (O).

View Article and Find Full Text PDF