Limited information on transcription factor (TF)-mediated regulation exists for most filamentous fungi, specifically for regulation of the production of plant-biomass-degrading enzymes (PBDEs). The filamentous fungus, , can secrete integrative cellulolytic and amylolytic enzymes, suggesting a promising application in biotechnology. In the present study, the regulatory roles of a Zn2Cys6 protein, TP05746, were investigated in through the use of biochemical, microbiological and omics techniques.
View Article and Find Full Text PDFBackground: Perfect and low cost of fungal amylolytic and cellulolytic enzymes are prerequisite for the industrialization of plant biomass biorefinergy to biofuels. Genetic engineering of fungal strains based on regulatory network of transcriptional factors (TFs) and their targets is an efficient strategy to achieve the above described aim. produces integrative amylolytic and cellulolytic enzymes; however, the regulatory mechanism associated with the expression of amylase and cellulase genes in remains unclear.
View Article and Find Full Text PDFTalaromyces pinophilus is a promising filamentous fungus for industrial production of biomass-degrading enzymes used in biorefining, and its genome was recently sequenced and reported. However, functional analysis of genes in T. pinophilus is rather limited owing to lack of genetic tools.
View Article and Find Full Text PDF