Accumulation of reactive oxygen species (ROS) can induce both protein tyrosine nitration and endothelial dysfunction in atherosclerosis. Endothelial dysfunction refers to impaired endothelium-dependent vasorelaxation that can be triggered by an imbalance in nitric oxide (NO) production and consumption. ROS reacts with NO to generate peroxynitrite, decreasing NO bioavailability.
View Article and Find Full Text PDFDamage to the skin causes physiological and functional issues. The most effective treatment approach is the use of wound dressings. Silk fibroin (SF) is a promising candidate biomaterial for regulating wound healing; however, its antibacterial properties and biological activity must be further improved.
View Article and Find Full Text PDFThe development of the tumor-targeting ability of nanocarriers is of paramount importance for gene delivery into tumor lesions as well as to avoid biotoxicity. Here we report the synthesis of the polyethyleneimine-fluorescein isothiocyanate-folic acid (PEI-FITC-FA) polymer, which could condense the tumor suppressor pp53 to form nanocomplexes. These targeted nanocomplexes exhibited favorable physical properties including a small size of <100 nm, exploiting the enhanced permeability and retention effect and tumor-targeting ability by binding to the overexpressed FA receptors on tumor cell surfaces.
View Article and Find Full Text PDFMelittin (MLT), as a natural active biomolecule, can penetrate the tumor cell membrane to play a role in cancer treatment and will attract more attention in future development of antitumor drugs. The main component of natural bee venom MLT was modified by introducing a pH-sensitive amide bond between the 2,3-dimethyl maleimide (DMMA) and the lysine (Lys) of MLT (MLT-DMMA). MLT and its corresponding modified peptide MLT-DMMA were used for antitumor and biocompatibility validation.
View Article and Find Full Text PDFNanotechnology-based antitumor drug delivery systems, known as nanocarriers, have demonstrated their efficacy in recent years. Typically, the size of the nanocarriers is around 100 nm. It is imperative to achieve an optimum size of these nanocarriers which must be designed uniquely for each type of delivery process.
View Article and Find Full Text PDFPollutant degradation is present mainly in the surface layer of biofilms, and the surface layer is the most vulnerable to impairment by toxic pollutants. In this work, the effects of nanosized TiO (n-TiO) on the average thicknesses of biofilm and on bacterial attachment on different surfaces were investigated. The binding mechanism of n-TiO to the cell surface was also probed.
View Article and Find Full Text PDFHind-limb ischemia (HLI) is one of the major complication of diabetic patients. Angiogenesis potential in diabetic patients is severely disrupted, and the mechanism underlying it has not been fully elucidated, making it an obstacle for developing an efficient therapeutic angiogenesis strategy. Skeletal muscle cells, through their paracrine function, had been known to be critical for neoangiogenesis.
View Article and Find Full Text PDFFurther specific target-ability development of biodegradable nanocarriers is extremely important to promote their security and efficiency in antitumor drug-delivery applications. In this study, a facilely prepared poly(lactic--glycolic acid) (PLGA)-polyethylene glycol (PEG)-folic acid (FA) copolymer was able to self-assemble into nanoparticles with favorable hydrodynamic diameters of around 100 nm and negative surface charge in aqueous solution, which was expected to enhance intracellular antitumor drug delivery by advanced dual tumor-target effects, ie, enhanced permeability and retention induced the passive target, and FA mediated the positive target. Fluorescence-activated cell-sorting and confocal laser-scanning microscopy results confirmed that doxorubicin (model drug) loaded into PLGA-PEG-FA nanoparticles was able to be delivered efficiently into tumor cells and accumulated at nuclei.
View Article and Find Full Text PDFHyperlipidemia is a risk factor for Alzheimer's disease (AD) and other neurodegenerative diseases. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a lipid regulatory gene involved in cell apoptosis. However, the function and mechanism of PCSK9 in neuronal apoptosis following hyperlipidemia remains to be elucidated.
View Article and Find Full Text PDFMicroRNAs are a group of endogenously small non-coding RNA molecules that downregulate gene expression at the post-transcriptional level through binding to the 3'UTR of target mRNAs. Recent findings have revealed a key role for microRNAs in the pathophysiological processes of atherosclerosis. As a complex disease, atherosclerosis is influenced by a combination of multiple genes and environmental factors.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease that is mainly caused by β-amyloid accumulation. A large number of studies have shown that elevated cholesterol levels may perform a function in AD pathology, and several cholesterol-related gene polymorphisms are associated with this disease. Although numerous studies have shown the important function of cholesterol in AD pathogenesis and development, the underlying mechanism remains unclear.
View Article and Find Full Text PDFHigher plants need to balance the efficiency of light energy absorption and dissipative photo-protection when exposed to fluctuations in light quantity and quality. This aim is partially realized through redox regulation within the chloroplast, which occurs in all chloroplast compartments except the envelope intermembrane space. In contrast to the chloroplast stroma, less attention has been paid to the thylakoid lumen, an inner, continuous space enclosed by the thylakoid membrane in which redox regulation is also essential for photosystem biogenesis and function.
View Article and Find Full Text PDFVascular endothelial cell function responds to steady laminar shear stress; however, the underlying mechanisms are not fully elucidated. In the present study, we examined the effect of steady laminar shear stress on vascular endothelial cell autophagy and endothelial cell nitric oxide synthase (eNOS) and endothelin-1 (ET-1) expression using an ex vivo perfusion system. Human vascular endothelial cells and common arteries of New Zealand rabbits were pretreated with or without rapamycin or 3-MA for 30 min.
View Article and Find Full Text PDFTightly bound extracellular polymeric substances (TB-EPS) play a substantial role on microbial aggregates, which can promote microbial cells to aggregate and adhere onto the carrier in bioreactor. However, the attachment and adsorption of TB-EPS on different surfaces were awaited to be elucidated. In this study, four self-assembled monolayers (SAMs) carrying methyl (CH3-SAM), amino (NH2-SAM), hydroxyl (OH-SAM), and carboxyl (COOH-SAM) terminal groups were prepared to model different surfaces.
View Article and Find Full Text PDFNeuronal apoptosis is crucial in neurodegenerative diseases. However, a lower apoptotic rate of nerve cells is detected in the brain compared to that in other organs in neurodegenerative patients or in animal models, suggesting that neuronal apoptosis induced by any type of risk factors is intricately regulated. Human and animal studies demonstrated that a high concentration of oxidized LDL (ox-LDL) in the brain, which is associated with hyperlipidemia, is one of the key apoptosis inducers in neurodegenerative diseases.
View Article and Find Full Text PDFOxidized lipoprotein(a) (oxLp(a)) is a more potent marker of atherogenesis than native Lp(a). However, the molecular mechanisms of oxLp(a) activity are not clear. Reactive oxygen species (ROS) have recently been suggested as acting as intracellular second messengers.
View Article and Find Full Text PDFWith the development of space life science, a study on the influence of microgravity on organism has been an increasingly concerned topic. Lots of studies indicate that microgravity plays an important role in the early development of embryos. The vascular system as the first-function system of embryos provides an interesting topic for many researchers.
View Article and Find Full Text PDFMannanases can be useful in the food, feed, pulp and paper industries. In this research a Bacillus subtilis strain (named Bs5) which produced high-level beta-mannanase was isolated. Maximum level of beta-mannanase (1231.
View Article and Find Full Text PDFThe activation of endothelial cells by oxidized low-density lipoprotein (ox-LDL) with subsequent increases in endothelial permeability occurs in the early stage of atherosclerosis. Cathepsin L (CATL) is one of the cysteine proteases and has been implicated in advanced atherosclerotic lesions and plaque instability. This study aimed to explore the role of CATL in ox-LDL-induced early atherosclerotic events and to delineate the underlying mechanism.
View Article and Find Full Text PDFEmbryonic vascular system development is a complex process, whose progress is regulated by a variety of the stimulation and inhibition signals, and these signals must play synergistic effect so as to ensure that each stage of vascular development can proceed normally. The vascular development is controlled by the gene to a certain extent, and has received extensive attention. Recent studies have revealed the biomechanical role is necessary to embryonic vascular development, in which different mechanism of cell biomechanics is involved.
View Article and Find Full Text PDFBackground: Development of efficient therapies of lung cancer and deep understanding of their anti-tumor mechanism are very important. The aim of the present study is to investigate the therapeutic effect of microRNA-22 (miR-22) on lung cancer using in vitro and in vivo methods.
Methods: Expression level of miR-22 in lung cancer specimens and relative normal tissues was detected by microRNA-specific quantitative real-time PCR (Q-PCR).
Since the percutaneous transtuminal coronary angioplasty was introduced into China in 1984, this procedure has become widely accepted as an important step in coronary revascularization. This study shows the effect of the monoclonal antibody (mAb) on the platelet glycoprotein IIIa receptor during endothelialization and in-stent restenosis by implanting the mAb-eluting stents into iliac arteries of rabbits. The hard tissue cross sections of the stent-implanted arterial segments were made by polymethylmethacrylate embedding.
View Article and Find Full Text PDFZhonghua Shao Shang Za Zhi
December 2011
Objective: To study the effect of substrate stiffness on proliferation, migration of fibroblast and integrin β(1) expression in fibroblast.
Methods: Fibroblasts were inoculated on silicon substrate with stiffness of (16.2 ± 0.