Publications by authors named "Gui-Tang Wang"

Background: The Bucephalidae is a large family of digenean trematodes but most previous analyses of its phylogenetic position have relied on a single mitochondrial gene or morphological features. Mitochondrial genomes (mitogenomes) remain unavailable for the entire family. To address this, we sequenced the complete mitogenome of Dollfustrema vaneyi and analyzed the phylogenetic relationships with other trematodes.

View Article and Find Full Text PDF
Article Synopsis
  • Studies on mitochondrial genome evolution show varying results, particularly in flatworms, which have the fastest-evolving mitogenomic sequences among bilaterians.
  • Researchers analyzed 223 flatworm species using phylogenetic models, finding that factors like thermic host environment and longevity had minimal effect on sequence evolution and genome size.
  • The study highlights that parasitism significantly explains branch length variability in flatworms, with free-living turbellaria evolving more quickly than parasitic Neodermata, suggesting the need to consider lineage-specific factors and the episodic nature of evolutionary changes in these analyses.
View Article and Find Full Text PDF

The liver fluke disease caused by is one of the most serious food-borne parasitic diseases in China. Many freshwater fish and shrimps can be infected with metacercariae as the second intermediate hosts in endemic regions. Owing to the lack of infected humans and the good administration of pet dogs and cats in cities of non-endemic regions, few fish are expected to be infected with metacercariae in urban lakes.

View Article and Find Full Text PDF

Although parasitic copepods of the genus Ergasilus von Nordmann, 1832 are globally distributed parasites of fish, their phylogenetic relationships with other Copepoda are not clear, and the characteristics of their mitochondrial genomes (mitogenomes) are not thoroughly understood. The objective of this study was to address these knowledge gaps by sequencing the complete mitogenome of Ergasilus tumidus Markevich, 1940. The complete mitogenome (GenBank Acc.

View Article and Find Full Text PDF

Background: Gyrodactylus is a lineage of monogenean flatworm ectoparasites exhibiting many features that make them a suitable model to study the host-parasite coevolutionary dynamics. Previous coevolutionary studies of this lineage mainly relied on low-power datasets (a small number of samples and a single molecular marker) and (now) outdated algorithms.

Methods: To investigate the coevolutionary relationship of gyrodactylids and their fish hosts in high resolution, we used complete mitogenomes (including two newly sequenced Gyrodactylus species), a large number of species in the single-gene dataset, and four different coevolutionary algorithms.

View Article and Find Full Text PDF

The genomic evolution of Polyopisthocotylea remains poorly understood in comparison to the remaining three classes of Neodermata: Monopisthocotylea, Cestoda, and Trematoda. Moreover, the evolutionary sequence of major events in the phylogeny of Neodermata remains unresolved. Herein we sequenced the mitogenome and transcriptome of the polyopisthocotylean Diplorchis sp.

View Article and Find Full Text PDF

Anaerobic parasitic ciliates are a specialized group of ciliates that are adapted to anoxic and oxygen-depleted habitats. Among them, Balantidium polyvacuolum, which inhabits the hindgut of Xenocyprinae fishes, has received very limited scientific attention, so the molecular mechanism of its adaptation to the digestive tract microenvironment is still unclear. In this study, transmission electron microscopy (TEM) and single-cell transcriptome analysis were used to uncover the metabolism of B.

View Article and Find Full Text PDF

The evidence that parasitic animals exhibit elevated mitogenomic evolutionary rates is inconsistent and limited to Arthropoda. Similarly, the evidence that mitogenomic evolution is faster in species with low locomotory capacity is limited to a handful of animal lineages. We hypothesised that these two variables are associated and that locomotory capacity is a major underlying factor driving the elevated rates in parasites.

View Article and Find Full Text PDF

Background: Chilodonella uncinata is an aerobic ciliate capable of switching between being free-living and parasitic on fish fins and gills, causing tissue damage and host mortality. It is widely used as a model organism for genetic studies, but its mitochondrial metabolism has never been studied. Therefore, we aimed to describe the morphological features and metabolic characteristics of its mitochondria.

View Article and Find Full Text PDF

Phylogenetic analysis has entered the genomics (multilocus) era. For less experienced researchers, conquering the large number of software programs required for a multilocus-based phylogenetic reconstruction can be somewhat daunting and time-consuming. PhyloSuite, a software with a user-friendly GUI, was designed to make this process more accessible by integrating multiple software programs needed for multilocus and single-gene phylogenies and further streamlining the whole process.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the mitochondrial genome of the fish parasite Pseudocapillaria tomentosa, which shows a unique structure compared to other nematodes within the Enoplea class.
  • P. tomentosa has significantly reduced noncoding regions and an inverted GC skew, indicating evolutionary divergence from the ancestral mitogenome architecture.
  • The research finds that while some lineages maintain a conserved mitochondrial structure, others exhibit substantial architectural variations, highlighting a discontinuous evolution pattern in enoplean nematodes.
View Article and Find Full Text PDF

Base composition skews (G-C/G+C) of mitochondrial genomes are believed to be primarily driven by mutational pressure, which is positively correlated with metabolic rate. In marine animals, metabolic rate is also positively correlated with locomotory capacity. Given the central role of mitochondria in energy metabolism, we hypothesised that selection for locomotory capacity should be positively correlated with the strength of purifying selection (dN/dS), and thus be negatively correlated with the skew magnitude.

View Article and Find Full Text PDF

Inversions of the origin of replication (ORI) in mitochondrial genomes produce asymmetrical mutational pressures that can cause strong base composition skews. Due to skews often being overlooked, the total number of crustacean lineages that underwent ORI events remains unknown. We analysed skews, cumulative skew plots, conserved sequence motifs, and mitochondrial architecture of all 965 available crustacean mitogenomes (699 unique species).

View Article and Find Full Text PDF

The majority strand of mitochondrial genomes of crustaceans usually exhibits negative GC skews. Most isopods exhibit an inversed strand asymmetry, believed to be a consequence of an inversion of the replication origin (ROI). Recently, we proposed that an additional ROI event in the common ancestor of Cymothoidae and Corallanidae families resulted in a double-inverted skew (negative GC), and that taxa with homoplastic skews cluster together in phylogenetic analyses (long-branch attraction, LBA).

View Article and Find Full Text PDF

Opalinids are a large group of anaerobic protists, mainly inhabiting the cloacae of amphibians (frogs and toads). The classification of this group has not been fully resolved, because of a lack of molecular information. Here, we give a redescription of Opalina triangulata Metcalf, 1923, collected from the rectum of the frog Fejervarya limnocharis, based on detailed morphological and molecular data.

View Article and Find Full Text PDF

The phylogeny of Isopoda, a speciose order of crustaceans, remains unresolved, with different data sets (morphological, nuclear, mitochondrial) often producing starkly incongruent phylogenetic hypotheses. We hypothesized that extreme diversity in their life histories might be causing compositional heterogeneity/heterotachy in their mitochondrial genomes, and compromising the phylogenetic reconstruction. We tested the effects of different data sets (mitochondrial, nuclear, nucleotides, amino acids, concatenated genes, individual genes, gene orders), phylogenetic algorithms (assuming data homogeneity, heterogeneity, and heterotachy), and partitioning; and found that almost all of them produced unique topologies.

View Article and Find Full Text PDF

The genus Chilodonella includes free-living ciliated protozoa as well as pathogenic species for freshwater fish, with Chilodonella hexasticha and Chilodonella piscicola being the most important ones. These parasites cause outbreaks with high mortalities among farmed freshwater fishes with great economic losses. There are few reports of these species in China, and their identification has been based mostly on their morphological characteristics.

View Article and Find Full Text PDF

Lipid metabolism can influence host's health. There is increasing evidence for interplay between two key regulating factors in lipid metabolism: bile acids (BAs) and gut microbiota. However, very little is known about how types of different diet-supplemented bile salts (BS) influence this interaction .

View Article and Find Full Text PDF

As a result of great diversity in life histories and a large number of described species, taxonomic and phylogenetic uncertainty permeates the entire crustacean order of Isopoda. Large molecular datasets capable of providing sufficiently high phylogenetic resolution, such as mitochondrial genomes (mitogenomes), are needed to infer their evolutionary history with confidence, but isopod mitogenomes remain remarkably poorly represented in public databases. We sequenced the complete mitogenome of Cymothoa indica, a species belonging to a family from which no mitochondrial genome was sequenced yet, Cymothoidae.

View Article and Find Full Text PDF

Gut microbiota plays a crucial importance in their host. Disturbance of the microbial structure and function is known to be associated with inflammatory intestinal disorders. Enteritis is a significant cause of high mortality in fish species, including grass carp (Ctenopharyngodon idellus).

View Article and Find Full Text PDF

Background: Complete mitochondrial genomes are much better suited for the taxonomic identification and phylogenetic studies of nematodes than morphology or traditionally-used molecular markers, but they remain unavailable for the entire Camallanidae family (Chromadorea). As the only published mitogenome in the Camallanina suborder (Dracunculoidea superfamily) exhibited a unique gene order, the other objective of this research was to study the evolution of mitochondrial architecture in the Spirurida order. Thus, we sequenced the complete mitogenome of the Camallanus cotti fish parasite and conducted structural and phylogenomic comparative analyses with all available Spirurida mitogenomes.

View Article and Find Full Text PDF

Dietary intake affects the structure and function of microbes in host intestine. However, the succession of gut microbiota in response to changes in macronutrient levels during a long period of time remains insufficiently studied. Here, we determined the succession and metabolic products of intestinal microbiota in grass carp () undergoing an abrupt and extreme diet change, from fish meal to Sudan grass ().

View Article and Find Full Text PDF