Low-temperature plasma (LTP) has shown great promise in wound healing, although the underlying mechanism remains poorly understood. In the present study, an argon atmospheric pressure plasma jet was employed to treat L929 murine fibroblasts cultured in vitro and skin wounds in BALB/c mice. The in vitro analysis revealed that treatment of fibroblasts with LTP for 15 s resulted in a significant increase in cell proliferation, secretion of epidermal growth factor (EGF) and transforming growth factor-βi (TGF-βi), production of intracellular reactive oxygen species (ROS), and the percentage of cells in S phase, protein expression of phosphorylated p65 (P-p65) and cyclinD1, but a noted decrease in the protein expression of inhibitor kappa B (IκB).
View Article and Find Full Text PDFThe potential applications of low temperature plasma (LTP) in wound healing have aroused the concern of many researchers. In this study, an argon atmospheric pressure plasma jet was applied to generate LTP for treatment of murine fibroblast cell (L929) cultured in vitro to investigate the effect of NF-κB pathway on fibroblast proliferation. The results showed that, compared with the control, L929 cells treated with plasma for less than 20 s had significant increases of proliferation; the productions of intracellular ROS, O and NO increased with prolongation of LTP treatment time; NF-κB pathway was activated by LTP in a proper dose range, and the expression of cyclinD1 in LTP-treated cells increased with the same trend as cell proliferation.
View Article and Find Full Text PDFWound Repair Regen
October 2016
Cold plasma has become an attractive tool for promoting wound healing and treating skin diseases. This article presents an atmospheric pressure plasma jet (APPJ) generated in argon gas through dielectric barrier discharge, which was applied to superficial skin wounds in BALB/c mice. The mice (n = 50) were assigned randomly into five groups (named A, B, C, D, E) with 10 animals in each group.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
October 2009
Objective: To investigate the effect of low-temperature plasma on inactivation of bacterial spores and explore the mechanism.
Methods: Dielectric barrier discharge (DBD) was employed to generate the atmospheric low-temperature plasma for treatment of B.subtilis var.