Despite the essential role of soil microorganisms in nutrient turnover in soil ecological systems and the recognized paramount significance of microbial necromass to soil organic carbon accumulation, how microbial community abundance and necromass respond to land use intensification level regulation remains poorly understood. To address this knowledge gap, based on the land use intensification level, three treatments were set up[annual wheat-maize rotation (CC), alternating temporary grassland with wheat planting (TG), and perennial grassland (PG)], and a long-term fixed filed experiment was established to investigate the influences of the regulation of land use intensification level on bacterial and fungal community abundances; the accumulation of bacterial, fungal, and total microbial necromass; and their contributions to SOC sequestration using droplet digital PCR and amino sugar detection technologies. We further sought to determine the key factors driving the bacterial, fungal, and total microbial necromass C accumulation.
View Article and Find Full Text PDFThe emerging environment-associated issues due to the overuse of inorganic fertilizers in agricultural production are of global concern despite the benefit of high yields. Eco-friendly organic materials with the capability to fertilize soil are encouraged to partially replace mineral fertilizer. The N cycle conducted by soil microorganisms is the most important biogeochemical process, dictating the N bioavailability in farmland ecosystems; however, little is known about how organic material amendment affects soil microbial N cycling under chemical fertilizer reduction.
View Article and Find Full Text PDFIntroduction: Emotional disorders are often observed in inflammatory bowel disease (IBD). IBD with emotional disorders leads to poor quality of life. This systematic review aims to assess the effectiveness of acupuncture in patients with IBD with emotional disorders.
View Article and Find Full Text PDFOur previous study demonstrated the potential therapeutic role of human neural stem cell-derived exosomes (hNSC-Exo) in ischemic stroke. Here, we loaded brain-derived neurotrophic factor (BDNF) into exosomes derived from NSCs to construct engineered exosomes (BDNF-hNSC-Exo) and compared their effects with those of hNSC-Exo on ischemic stroke both in vitro and in vivo. In a model of HO-induced oxidative stress in NSCs, BDNF-hNSC-Exo markedly enhanced cell survival.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
August 2021
In order to explore the impacts of different tillage managements on the structure and diversity of microbial community in fluvo-aquic soil, the phospholipid fatty acid (PLFA) method was used to determine microbial community composition in soil aggregates. Four tillage treatments were set up in Qihe County, Shandong Province, including rotary tillage with straw return (RT), deep ploughing with straw return (DP), subsoiling with straw return (SS) and no-tillage with straw return (NT). Our results showed that DP treatment significantly increased the amount of fungal PLFAs and fungi/bacteria ratio in >5 mm soil aggregates compared with RT.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM), the most frequently occurring malignant brain tumor in adults, remains mostly untreatable. Because of the heterogeneity of invasive gliomas and drug resistance associated with the tumor microenvironment, the prognosis is poor, and the survival rate of patients is low. Communication between GBMs and non-glioma cells in the tumor microenvironment plays a vital role in tumor growth and recurrence.
View Article and Find Full Text PDFBackground: Emerging evidence suggests that the spread of glioma to the subventricular zone (SVZ) is closely related to glioma recurrence and patient survival. Neural stem cells (NSCs) are the main cell type in the SVZ region and exhibit tumor-homing ability.
Aim: To evaluate the effects of conditioned medium (CM) derived from SVZ NSCs on the cancer-related behaviors of glioma cells.
Soil CO fixer, which plays an important role in soil carbon cycling, can convert CO into organic matter. However, the effect of land-use change on the abundance and community structure of soil CO fixer is poorly understood. Examining the community of functional microbes that encode the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase under the conversion of land-use patterns may provide valuable information for promoting soil carbon sequestration ability and sustainable use.
View Article and Find Full Text PDFWorld J Stem Cells
October 2019
Huan Jing Ke Xue
January 2013
The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
February 2012
By using systematic conservation planning (SCP) method, and taking catchment as planning unit, an optimization of conservation network system for the inter-basin wetland ecosystem in Huang-Huai-Hai Region was conducted, with a comprehensive consideration of 3-dimensional (lateral, longitudinal and vertical) connectivity and Inter-basin Water Transfer Project and by the methods of irreplaceability analysis and gap identification. The efficacy of the optimized conservation network system was evaluated, as compared with the existing conservation network system. According to the principles of irreplaceability and connectivity, the wetland conservation gaps could be divided into two types, i.
View Article and Find Full Text PDF