Angew Chem Int Ed Engl
December 2024
In industry, the two important nitrile starting materials, adiponitrile and 2-methylglutaronitrile, are primarily manufactured through the well-known DuPont process, which consists of a tandem sequence including first hydrocyanation, isomerization and second hydrocyanation. However, this mature process has the intrinsic defects of step efficiency and regioselectivity. Herein, we report a nickel-catalyzed divergent, one-step double hydrocyanation of 1,3-butadiene to produce either adiponitrile or 2-methylglutaronitrile in high regioselectivity.
View Article and Find Full Text PDFThe small molecule epiberberine (EPI) is a natural alkaloid with versatile bioactivities against several diseases including cancer and bacterial infection. EPI can induce the formation of a unique binding pocket at the 5' side of a human telomeric G-quadruplex (HTG) sequence with four telomeric repeats (Q4), resulting in a nanomolar binding affinity ( approximately 26 nM) with significant fluorescence enhancement upon binding. It is important to understand (1) how EPI binding affects HTG structural stability and (2) how enhanced EPI binding may be achieved through the engineering of the DNA binding pocket.
View Article and Find Full Text PDFC2'-halogenation has been recognized as an essential modification to enhance the drug-like properties of nucleotide analogs. The direct C2'-halogenation of the nucleotide 2'-deoxyadenosine-5'-monophosphate (dAMP) has recently been achieved using the Fe(II)/α-ketoglutarate-dependent nucleotide halogenase AdaV. However, the limited substrate scope of this enzyme hampers its broader applications.
View Article and Find Full Text PDFThe development of green and efficient deuteration methods is of great significance for various fields such as organic synthesis, analytical chemistry, and medicinal chemistry. Herein, we have developed a dehalogenative deuteration strategy using piezoelectric materials as catalysts in a solid-phase system under ball-milling conditions. This non-spontaneous reaction is induced by mechanical force.
View Article and Find Full Text PDFPhotoinduced Pd-catalyzed bisfunctionalization of butadienes with a readily available organic halide and a nucleophile represents an emerging and attractive method to assemble versatile alkenes bearing various functional groups at the allylic position. However, enantiocontrol and/or diastereocontrol in the C-C or C-X bond-formation step have not been solved due to the open-shell process. Herein, we present a cascade asymmetric dearomatization reaction of indoles via photoexcited Pd-catalyzed 1,2-biscarbonfunctionalization of 1,3-butadienes, wherein asymmetric control on both the nucleophile and electrophile part is achieved for the first time in photoinduced bisfunctionalization of butadienes.
View Article and Find Full Text PDFGlycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol synthesis. Understanding its substrate recognition mechanism may help to design drugs to regulate the production of glycerol lipids in cells. In this work, we investigate how the native substrate, glycerol-3-phosphate (G3P), and palmitoyl-coenzyme A (CoA) bind to the human GPAT isoform GPAT4 via molecular dynamics simulations (MD).
View Article and Find Full Text PDFWe herein describe a palladium-catalyzed hydrocyanation of propiolamides for the stereodivergent synthesis of trisubstituted acrylonitriles. This synthetic method tolerated various primary, secondary and tertiary propiolamides. The cautious selection of a suitable ligand is essential to the success of this stereodivergent process.
View Article and Find Full Text PDFIn epigenetic mechanisms, DNA methyltransferase 3 alpha (DNMT3A) acts as an initiator for DNA methylation and prevents the downstream genes from expressing. Perturbations of DNMT3A functions may cause uncontrolled gene expression, resulting in pathogenic consequences such as cancers. It is, therefore, vitally important to understand the catalytic process of DNMT3A in its biological macromolecule assembly, .
View Article and Find Full Text PDFSelective defunctionalization of synthetic intermediates is a valuable approach in organic synthesis. Here, we present a theoretical study on the recently developed B(CF)/hydrosilane-mediated reductive deamination reaction of primary amines. Our computational results provide important insights into the reaction mechanism, including the active intermediate, the competing reactions of the active intermediate, the role of excess hydrosilane, and the origin of chemoselectivity.
View Article and Find Full Text PDFEnzymatic stereoselectivity has typically been unrivalled by most chemical catalysts, especially in the conversion of small substrates. According to the 'lock-and-key theory', enzymes have confined active sites to accommodate their specific reacting substrates, a feature that is typically absent from chemical catalysts. An interesting case in this context is the formation of cyanohydrins from ketones and HCN, as this reaction can be catalysed by various classes of catalysts, including biological, inorganic and organic ones.
View Article and Find Full Text PDFAldehyde deformylations occurring in organisms are catalyzed by metalloenzymes through metal-dioxygen active cores, attracting great interest to study small-molecule metal-dioxygen complexes for understanding relevant biological processes and developing biomimetic catalysts for aerobic transformations. As the known deformylation mechanisms, including nucleophilic attack, aldehyde α-H-atom abstraction, and aldehyde hydrogen atom abstraction, undergo outer-sphere pathways, we herein report a distinct inner-sphere mechanism based on density functional theory (DFT) mechanistic studies of aldehyde deformylations with a copper (II)-superoxo complex. The inner-sphere mechanism proceeds via a sequence mainly including aldehyde end-on coordination, homolytic aldehyde C-C bond cleavage, and dioxygen O-O bond cleavage, among which the C-C bond cleavage is the rate-determining step with a barrier substantially lower than those of outer-sphere pathways.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are noncoding RNAs with 18-26 nucleotides; they pair with target mRNAs to regulate gene expression and produce significant changes in various physiological and pathological processes. In recent years, the interaction between miRNAs and their target genes has become one of the mainstream directions for drug development. As a large-scale biological database that mainly provides miRNA-target interactions (MTIs) verified by biological experiments, miRTarBase has undergone five revisions and enhancements.
View Article and Find Full Text PDFA regiodivergent nickel-catalyzed hydrocyanation of 1-aryl-4-silyl-1,3-diynes is reported. When appropriate bisphosphine and phosphine-phosphite ligands are applied, the same starting materials can be converted into two different enynyl nitriles with good yields and high regioselectivities. The DFT calculations unveiled that the structural features of different ligands bring divergent alkyne insertion modes, which in turn lead to different regioselectivities.
View Article and Find Full Text PDFSelective oxidation is one of the most important and challenging transformations in both academic research and chemical industry. Recently, a highly selective and efficient way to synthesize biologically active γ-hydroxy-α,β-unsaturated molecules from Cu-catalyzed vinylogous aerobic oxidation of α,β- and β,γ-unsaturated compounds has been developed. However, the detailed reaction mechanism remains elusive.
View Article and Find Full Text PDFA highly regioselective nickel-based catalyst system for the isomerization/hydrocyanation of aliphatic internal olefins is described. This benign tandem reaction provides facile access to a wide variety of aliphatic nitriles in good yields with excellent regioselectivities. Thanks to Lewis acid-free conditions, the protocol features board functional groups tolerance, including secondary amine and unprotected alcohol groups.
View Article and Find Full Text PDFA regiodivergent nickel-catalyzed hydrocyanation of a broad range of internal alkenes involving a chain-walking process is reported. When appropriate diastereomeric biaryl diphosphite ligands are applied, the same starting materials can be converted to either linear or branched nitriles with good yields and high regioselectivities. DFT calculations suggested that the catalyst architecture determines the regioselectivity by modulating electronic and steric interactions.
View Article and Find Full Text PDFIt has been known for many years that the peroxidase activity of cyclooxygenase 1 and 2 (COX-1 and COX-2) can be reactivated in vitro by the presence of phenol, which serves as a reducing compound, but the underlying mechanism is still poorly understood. In the present study, we use phenol as a model compound to investigate the mechanism by which the peroxidase activity of human COXs is reactivated after each catalytic cycle. Molecular docking and quantum mechanics calculations are carried out to probe the interaction of phenol with the peroxidase site of COXs and the reactivation mechanism.
View Article and Find Full Text PDFA new type of coupling between unactivated olefins and nonstabilized alkyl radicals was achieved, which enabled the first intermolecular Heck-type reaction of cycloketone oxime esters and unactivated alkenes. This directing-group-based strategy was compatible with various unactivated alkenes and cyclobutanone-, cyclopentanone-, and cyclohexanone-derived oxime esters. Density functional theory calculations showed that both excellent regioselectivities and good diastereoselectivities could be ascribed to the 2-butanol-assisted concerted H-OBz elimination of the conformationally strained metallacyclic transition state.
View Article and Find Full Text PDFA highly regio- and stereoselective hydrocyanation of 1,3-enynes was implemented by nickel/diphosphine catalysts. A wide range of highly regio- and stereoselective alkenyl nitriles were efficiently prepared. In this transformation, both the tethered alkene and the ligand play key roles in the reactivity and selectivity.
View Article and Find Full Text PDFDisruption of copper homeostasis is associated with a number of severe diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Wilson's disease, and Menkes syndrome. Given this association, the detection and capture of Cu in biological fluids and tissues may provide a new direction for the diagnosis and treatment of related disorders. The current analytical approaches, however, are challenging due to the high cost, complexity, and long time required to prepare and analyze samples.
View Article and Find Full Text PDFChem Commun (Camb)
November 2019
Mechanistic studies are of great importance for the understanding, optimization, and design of chemical reactions, especially catalysis. In recent years, the combination of mass spectrometry and computational chemistry has been proven to be powerful and effective for the exploration of reaction mechanisms. The former provides information of possible reaction intermediates, which are difficult to obtain using other experimental methods, while the latter gives detailed structural information of reaction intermediates and explores reaction energy profiles.
View Article and Find Full Text PDFAn efficient one-pot cascade process via unprecedented quadruple cleavage of BrCFCOOEt with primary amines to afford valuable fluorine-containing heterocycles is described, in which BrCFCOOEt plays a dual role as a C1 synthon and a difluoroalkylating reagent for the first time. Mechanistic studies supported by DFT calculations suggest that a base plays an active role in the formation of the key intermediate isocyanides generated in situ from primary amines and difluorocarbene.
View Article and Find Full Text PDFMolecular dynamics (MD) simulations have been performed to study the dynamic behavior of noncovalent enzyme carbocation complexes involved in the cyclization of geranylgeranyl diphosphate to taxadiene catalyzed by taxadiene synthase (TXS). Taxadiene and the observed four side products originate from the deprotonation of carbocation intermediates. The MD simulations of the TXS carbocation complexes provide insights into potential deprotonation mechanisms of such carbocations.
View Article and Find Full Text PDFA catalytic pinacol-type reductive rearrangement reaction of internal 1,2-diols is reported herein. Several scaffolds not usually amenable to pinacol-type reactions, such as aliphatic secondary-secondary diols, undergo the transformation well without the need for prefunctionalization. The reaction uses a simple boron catalyst and two silanes and proceeds through a concerted, stereoinvertive mechanism that enables the preparation of highly enantiomerically enriched products.
View Article and Find Full Text PDF