In this work, the electron-phonon, phonon-phonon, and phonon structure scattering mechanisms and their effect on the thermal and thermoelectric properties of a silver nanowire (AgNW) is investigated in the temperature range of 10 to 300 K. The electron-phonon scattering rate decreases with the increase of temperature. The phonon-phonon scattering rate increases with temperature and becomes greater than the electron-phonon scattering rate when the temperature is higher than the Debye temperature (223 K).
View Article and Find Full Text PDFLaser induced plasmas (LIPs) method is a highly regarded approach to evaluate the chemical composition of materials. But the strong self-absorption of the radiation seriously affects its accuracy. Meanwhile, the model based on self-absorption phenomenon makes its application very difficult.
View Article and Find Full Text PDFAccurate knowledge of electrical conductivity and thermal conductivity temperature dependence plays a crucial role in the design of a thermometer. Here, by using a two-beam laser direct writing system, an individual silver nanowire (AgNW) with well-defined dimensions is fabricated on a polyethylene terephthalate (PET) substrate. The temperature dependence of the resistivity of the fabricated AgNW is measured ranging from 10 to 300 K, and fitted with the Bloch-Grüneisen formula.
View Article and Find Full Text PDFFlexible electrically conductive nanowires are now a key component in the fields of flexible devices. The achievement of metal nanowire with good flexibility, conductivity, compact and smooth morphology is recognized as one critical milestone for the flexible devices. In this study, a two-beam laser direct writing system is designed to fabricate AgNW on PET sheet.
View Article and Find Full Text PDF