Stem cells-derived extracellular vesicles (SC-EVs) have emerged as promising therapeutic agents for wound repair, recapitulating the biological effects of parent cells while mitigating immunogenic and tumorigenic risks. These EVs orchestrate wound healing processes, notably through modulating angiogenesis-a critical event in tissue revascularization and regeneration. This study provides a comprehensive overview of the multifaceted mechanisms underpinning the pro-angiogenic capacity of EVs from various stem cell sources within the wound microenvironment.
View Article and Find Full Text PDFPlacental neovascularization plays a crucial role in fetomaternal circulation throughout pregnancy and is dysregulated in several pregnancy-related diseases, including preeclampsia, gestational diabetes mellitus, and fetal growth restriction. Endothelial progenitor cells (EPCs) are a heterogeneous population of cells that differentiate into mature endothelial cells, which influence vascular homeostasis, neovascularization, and endothelial repair. Since their discovery in 1997 by Asahara et al.
View Article and Find Full Text PDFChronic non-healing diabetic wounds and ulcers can be fatal, lead to amputations, and remain a major challenge to medical, and health care sectors. Susceptibility to infection and impaired angiogenesis are two central reasons for the clinical consequences associated with chronic non-healing diabetic wounds. Herein, we successfully developed calcium ion (Ca) cross-linked sodium alginate (SA) hydrogels with both pro-angiogenesis and antibacterial properties.
View Article and Find Full Text PDFDiabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing.
View Article and Find Full Text PDFThe luminescence enhancement effect of different kinds and contents of rare earth complexe (RE(DBM)3Phen, RE = Dy, La, Gd, Sm, Y; DBM = dibenzoylmethane; Phen = 1,10-phenanthroline) sensitized Eu(DBM)3Phen doped in poly(methyl methacrylate) (PMMA) matrix was investigated using the combinatorial method. The efficiency of the luminescence enhancement increases with a decrease in the weight percentage of the Eu(DBM)3Phen and an increase in the molecular weight of the PMMA in the systems. Among these sensitization ion complexes, La(DBM)3Phen shows the highest sensitization efficiency.
View Article and Find Full Text PDF