Publications by authors named "Gui Jiang Zhou"

Herein, the first acceptorless dehydrogenation of tetrahydroquinolines (THQs), indolines, and other related N-heterocycles, by merging visible-light photoredox catalysis and cobalt catalysis at ambient temperature, is described. The potential applications to organic transformations and hydrogen-storage materials are demonstrated. Primary mechanistic investigations indicate that the catalytic cycle occurs predominantly by an oxidative quenching pathway.

View Article and Find Full Text PDF

Novel phosphorescent hydrogels have been explored by immobilizing an Ir(III) metal complex into the matrices of hydrogels. FTIR spectra demonstrate that the Ir(III) -PNaAMPS hydrogel is achieved by irreversible incorporation of positively charged [Ir(ppy)(2)(dmbpy)]Cl (ppy = 2-phenylpyrine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine) into negatively charged poly(2-acrylamido-2-methylpropane sulfonic acid sodium) (PNaAMPS) hydrogel via electrostatic interaction. The photoluminescent spectra indicate that the Ir(III)-PNaAMPS hydrogel exhibits stable phosphorescence.

View Article and Find Full Text PDF

Within the scope of nonlinear optics, optical power limiting (OPL) materials are commonly regarded as an important class of compounds which can protect the delicate optical sensors or human eyes from sudden exposure to damaging intense laser beams. Recent efforts have been devoted to developing organometallic acetylide complexes, dendrimers and polymers as high performance OPL materials of the next generation which can favorably optimize the optical limiting/transparency trade-off issue. These metallated materials offer a new avenue towards a new family of highly transparent homo- and heterometallic optical limiters with good solution processability which outperform those of current state-of-the-art visible-light-absorbing competitors such as fullerenes, metalloporphyrins and metallophthalocyanines.

View Article and Find Full Text PDF

A homologous set of 9,9-dialkyl-4,5-diazafluorene compounds were prepared by alkylation of 4,5-diazafluorene with the appropriate alkyl bromide and under basic conditions. The structures of these simple organic compounds were confirmed by spectroscopic techniques (FTIR, NMR, and FABMS). Their biological effects toward a panel of human carcinoma cells, including Hep3B hepatocellular carcinoma, MDAMB-231 breast carcinoma, and SKHep-1 hepatoma cells, were investigated; a structure-activity correlation was established with respect to the length of the alkyl chain and the fluorene ring structure.

View Article and Find Full Text PDF