Publications by authors named "Guhan Jayaraman"

Recombinant antibodies (rAbs) have emerged as a promising solution to tackle antigen specificity, enhancement of immunogenic potential and versatile functionalization to treat human diseases. The development of single chain variable fragments has helped accelerate treatment in cancers and viral infections, due to their favorable pharmacokinetics and human compatibility. However, designing rAbs is traditionally viewed as a genetic engineering problem, with phage display and cell free systems playing a major role in sequence selection for gene synthesis.

View Article and Find Full Text PDF

Hydroxyapatite (HAp) is a calcium phosphate ceramic, widely used as a matrix for protein chromatography. The crystal structure of HAp is amenable to a wide range of substitutions, thus allowing for the alteration of its properties. In this study, nickel-ion substituted HAp (NiSHAp) was synthesized using a wet-precipitation method, followed by spray drying.

View Article and Find Full Text PDF

Quantitative polymerase chain reaction (qPCR) is widely used in detection of nucleic acids, but existing methods either lack sequence-specific detection or are costly because they use chemically modified DNA probes. In this work, we apply a DNA aptamer and light-up dye-based chemistry for qPCR for nucleic acid quantification. In contrast to the conventional qPCR, in our method, we observe an exponential decrease in fluorescence upon DNA amplification.

View Article and Find Full Text PDF

Matrix-assisted refolding (MAR) has been used as an alternative to conventional dilution-based refolding to improve recovery and reduce specific buffer consumption. Size exclusion chromatography (SEC) has been extensively used for MAR because of its ability to load and refold proteins at high concentrations. However, the SEC-based batch MAR processes have the disadvantages of requiring longer columns for better separation and product dilution due to a high column-to-sample volume ratio.

View Article and Find Full Text PDF

Lignin is a ubiquitously available and sustainable feedstock that is underused as its depolymerization yields a range of aromatic monomers that are challenging substrates for microbes. In this study, we investigated the growth of VLB120 on biomass-derived aromatics, namely, 4-coumarate, ferulate, 4-hydroxybenzoate, and vanillate. The wild type strain was not able to grow on 4-coumarate and ferulate.

View Article and Find Full Text PDF

Microsphere hydroxyapatite (HAp) is widely used in various biomedical and chromatographic applications. The work described in this manuscript focuses on a dissolution precipitation method for production of HAp microspheres. This method overcomes certain drawbacks of conventional preparation methods used for HAp preparation, which produce polydisperse particles and are time-consuming and expensive.

View Article and Find Full Text PDF

This study investigates the behavior and intracellular changes in Escherichia coli (model organism) during electro-oxidation with Ti/Sb-SnO/PbO anode in a chlorine free electrochemical system. Preliminary studies were conducted to understand the effect of initial E. coli concentration and applied current density on disinfection.

View Article and Find Full Text PDF

Chromatography-based refolding is emerging as a promising alternative to dilution-refolding of solubilized inclusion bodies (IBs). The advantages of this matrix-assisted refolding (MAR) lie in its ability to reduce aggregate formation, leading to better recovery of active protein, and enabling refolding at higher protein concentration. However, batch chromatography has the disadvantage of ineffective solvent utilization, under-utilization of resin, and low throughput.

View Article and Find Full Text PDF

Background: Simultaneous saccharification and fermentation (SSF) of pre-treated lignocellulosics to biofuels and other platform chemicals has long been a promising alternative to separate hydrolysis and fermentation processes. However, the disparity between the optimum conditions (temperature, pH) for fermentation and enzyme hydrolysis leads to execution of the SSF process at sub-optimal conditions, which can affect the rate of hydrolysis and cellulose conversion. The fermentation conditions could be synchronized with hydrolysis optima by carrying out the SSF at a higher temperature, but this would require a thermo-tolerant organism.

View Article and Find Full Text PDF

Hyaluronic acid (HA) based biomaterials have several biomedical applications. HA biosynthesis is catalysed by hyaluronan synthase (HAS). The unavailability of 3-D structure of HAS and gaps in molecular understanding of HA biosynthesis process pose challenges in rational engineering of HAS to control HA molecular weight and titer.

View Article and Find Full Text PDF

The molecular weight (Mw) of hyaluronic acid (HA) determines its suitability for medical and cosmetic applications. Here, we characterize in vitro and in vivo HA synthesis of streptococcal HA synthases (HASs) with a special focus on HA Mw. To date, four streptococcal HA producers are described (Streptococcus equi subsp.

View Article and Find Full Text PDF

The molecular weight of hyaluronic acid (HA) is a critical property which determines its usage in various biomedical applications. This study investigates the correlation between the availability of a critical cofactor, acetyl-CoA, the concentration of a limiting precursor, UDP-N-acetylglucosamine (UDP-GlcNAc), and the molecular weight of HA (MW) produced by recombinant Lactococcus lactis MKG6 cultures. This strain expressed three heterologous HA-pathway genes obtained from the has operon of Streptococcus zooepidemicus in an ldh-mutant host strain, L.

View Article and Find Full Text PDF

D-Lactic acid (D-LA) is an enantiomer of lactic acid, which has a niche application in synthesis of poly-lactic acid based (PLA) polymer owing to its contribution to the thermo-stability of stereo-complex PLA polymer. Utilization of renewable substrates such as whey permeate is pivotal to economically viable production of D-LA. In present work, we have demonstrated D-LA production from whey permeate by Lactobacillus delbrueckii and engineered Lactococcus lactis.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is a biopolymer with wide biomedical and cosmetic applications, wherein the molecular weight of HA (MW) is an important quality parameter that determines its suitability for the targeted application. To produce HA with desired molecular weight, it is important to identify parameters that offer tunability and control of MW at a desired value during fermentation. In this work, two tunable parameters, viz.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is a high-value polysaccharide with many biomedical applications. Microbial production of HA is now replacing the traditional extraction method from rooster combs. Production of medical-grade HA with defined characteristics requires controlled process conditions because there are many fermentation process parameters that affect the microbial synthesis of HA.

View Article and Find Full Text PDF

There is an unreasonably high variation in the literature reports on molecular weight of hyaluronic acid (HA) estimated using conventional size exclusion chromatography (SEC). This variation is most likely due to errors in estimation. Working with commercially available HA molecular weight standards, this work examines the extent of error in molecular weight estimation due to two factors: use of non-HA based calibration and concentration of sample injected into the SEC column.

View Article and Find Full Text PDF

The potential advantages of hyaluronic acid (HA) production by metabolically-engineered is constrained by the lower molecular weight and yield of HA obtained in these strains, compared to natural producers. Earlier studies have correlated lower HA yield with excessive lactate production in . cultures (Chauhan et al.

View Article and Find Full Text PDF

Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L.

View Article and Find Full Text PDF

Microbial production of hyaluronic acid (HA) is an attractive substitute for extraction of this biopolymer from animal tissues. Natural producers such as Streptococcus zooepidemicus are potential pathogens; therefore, production of HA by recombinant bacteria that are generally recognized as safe (GRAS) organisms is a viable alternative that is being extensively explored. However, plasmid-based expression systems for HA production by recombinant bacteria have the inherent disadvantage of reduced productivity because of plasmid instability.

View Article and Find Full Text PDF

HA molecular weight variation in Streptococcus zooepidemicus and two recombinant Lactococcus lactis strains were investigated by chemostat experiments and metabolic flux analysis (MFA). The study showed that intracellular flux ratio of UDP-GlcUA to UDP-GlcNAc correlated directly with HA molecular weight, for all the three strains. The ratio of intracellular concentration of these HA precursors also exhibited a similar trend.

View Article and Find Full Text PDF

Fermentation-derived products are in greater demand to meet the increasing global market as well as to overcome environmental problems. In this work, Escherichia coli has been metabolically engineered with acrylate pathway genes from Clostridium propionicum for the conversion of D-lactic acid to propionic acid. The introduced synthetic pathway consisted of seven genes encoding the enzymes propionate CoA-transferase (Pct), lactoyl-CoA dehydratase (Lcd) and acryloyl-CoA reductase (Acr).

View Article and Find Full Text PDF

The has operon genes in the hyaluronan (HA) producer, Streptococcus zooepidemicus, encode for some of the critical enzymes in the HA biosynthetic pathway. Heterologous expression of different combinations of multiple has genes has resulted in increasing HA production to varying degrees in different recombinant strains. In this work, a recombinant Lactococcus lactis strain (SJR6) was constructed, with insertion of three has operon genes (hasABD) from S.

View Article and Find Full Text PDF

In this work, Lactobacillus reuteri has been metabolically engineered for improving 1, 3-propanediol (1, 3-PD) production by the expression of an Escherichia coli alcohol dehydrogenase, yqhD, that is known to efficiently convert the precursor 3-hydroxypropionaldehyde (3-HPA) to 1, 3-PD. The engineered strain exhibited significantly altered formation rates for the product and other metabolites during the fermentation. An increase in the 1, 3-PD specific productivity of 34% and molar yield by 13% was achieved in the clone, relative to the native strain.

View Article and Find Full Text PDF

In the first part of this work adsorption isotherm parameters were acquired to describe the migration of recombinant streptokinase in Butyl Sepharose columns at different salt concentrations. Based on these results, a simulated moving bed (SMB) chromatographic process was designed and realised, which exploits a two-step salt gradient and allows the continuous separation of streptokinase from contaminants present in a clarified Escherichia coli cell lysate solution. This second part describes the design of the three-zone open-loop gradient SMB process applying both equilibrium theory and an equilibrium stage model and presents results of a series of experiments aiming to obtain pure streptokinase.

View Article and Find Full Text PDF

The design of gradient simulated moving bed (SMB) chromatographic processes requires an appropriate selection of the chromatographic system followed by the determination of adsorption isotherm parameters in the relevant range of mobile phase conditions. The determination of these parameters can be quite difficult for recombinant target proteins present in complex protein mixtures. The first part of this work includes the estimation of adsorption isotherm parameters for streptokinase and a lumped impurity fraction present in an Escherichia coli cell lysate for a hydrophobic interaction chromatography (HIC) matrix.

View Article and Find Full Text PDF